2000 character limit reached
MadNIS -- Neural Multi-Channel Importance Sampling
Published 12 Dec 2022 in hep-ph, hep-ex, and physics.comp-ph | (2212.06172v2)
Abstract: Theory predictions for the LHC require precise numerical phase-space integration and generation of unweighted events. We combine machine-learned multi-channel weights with a normalizing flow for importance sampling, to improve classical methods for numerical integration. We develop an efficient bi-directional setup based on an invertible network, combining online and buffered training for potentially expensive integrands. We illustrate our method for the Drell-Yan process with an additional narrow resonance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.