Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Energy-recurrence Breakdown and Chaos in Disordered Fermi-Pasta-Ulam-Tsingou Lattices (2212.05644v1)

Published 12 Dec 2022 in math.DS

Abstract: In this paper, we consider the classic Fermi-Pasta-Ulam-Tsingou system as a model of interacting particles connected by harmonic springs with a quadratic nonlinear term (first system) and a set of second-order ordinary differential equations with variability (second system) that resembles Hamilton's equations of motion of the Fermi-Pasta-Ulam-Tsingou system. In the absence of variability, the second system becomes Hamilton's equations of motion of the Fermi-Pasta-Ulam-Tsingou system (first system). Variability is introduced to Hamilton's equations of motion of the Fermi-Pasta-Ulam-Tsingou system to take into account inherent variations (for example, due to manufacturing processes), giving rise to heterogeneity in its parameters. We demonstrate that a percentage of variability smaller than a threshold can break the well-known energy recurrence phenomenon and induce localization in the energy normal-mode space. However, percentage of variability larger than the threshold may make the trajectories of the second system blow up in finite time. Using a multiple-scale expansion, we derive analytically a two normal-mode approximation that explains the mechanism for energy localization and blow up in the second system. We also investigate the chaotic behavior of the two systems as the percentage of variability is increased, utilising the maximum Lyapunov exponent and Smaller Alignment Index. Our analysis shows that when there is almost energy localization in the second system, it is more probable to observe chaos, as the number of particles increases.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.