Papers
Topics
Authors
Recent
2000 character limit reached

Set-decomposition of normal rectifiable G-chains via an abstract decomposition principle (2212.04752v3)

Published 9 Dec 2022 in math.AP

Abstract: We introduce the notion of set-decomposition of a normal G-flat chain. We show that any normal rectifiable $G$-flat chain admits a decomposition in set-indecomposable sub-chains. This generalizes the decomposition of sets of finite perimeter in their ``measure theoretic'' connected components due to Ambrosio, Caselles, Masnou and Morel. It can also be seen as a variant of the decomposition of integral currents in indecomposable components by Federer.As opposed to previous results, we do not assume that G is boundedly compact. Therefore we cannot rely on the compactness of sequences of chains with uniformly bounded N-norms. We deduce instead the result from a new abstract decomposition principle. As in earlier proofs a central ingredient is the validity of an isoperimetric inequality. We obtain it here using the finiteness of some h-mass to replace integrality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.