Papers
Topics
Authors
Recent
Search
2000 character limit reached

On two-loop divergences of effective action in $6D$, ${\cal N}=(1,1)$ SYM theory

Published 7 Dec 2022 in hep-th | (2212.03766v2)

Abstract: We study the off-shell structure of the two-loop effective action in $6D, {\cal N}=(1,1)$ supersymmetric gauge theories formulated in ${\cal N}=(1,0)$ harmonic superspace. The off-shell effective action involving all fields of $6D, {\cal N}=(1,1)$ supermultiplet is constructed by the harmonic superfield background field method, which ensures both manifest gauge covariance and manifest ${\cal N}=(1,0)$ supersymmetry. We analyze the off-shell divergences dependent on both gauge and hypermultiplet superfields and argue that the gauge invariance of the divergences is consistent with the non-locality in harmonics. The two-loop contributions to the effective action are given by harmonic supergraphs with the background gauge and hypermultiplet superfields. The procedure is developed to operate with the harmonic-dependent superpropagators in the two-loop supergraphs within the superfield dimensional regularization. We explicitly calculate the gauge and the hypermultiplet-mixed divergences as the coefficients of $\frac{1}{{\varepsilon}2}$ and demonstrate that the corresponding expressions are non-local in harmonics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.