Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Graph-aware Multi-View Fusion for Rumor Detection on Social Media

Published 8 Nov 2022 in cs.CL | (2212.02419v1)

Abstract: Automatic detecting rumors on social media has become a challenging task. Previous studies focus on learning indicative clues from conversation threads for identifying rumorous information. However, these methods only model rumorous conversation threads from various views but fail to fuse multi-view features very well. In this paper, we propose a novel multi-view fusion framework for rumor representation learning and classification. It encodes the multiple views based on Graph Convolutional Networks (GCN), and leverages Convolutional Neural Networks (CNN) to capture the consistent and complementary information among all views and fuse them together. Experimental results on two public datasets demonstrate that our method outperforms state-of-the-art approaches.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.