Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Kauffman bracket intertwiners and the volume conjecture (2212.01069v2)

Published 2 Dec 2022 in math.AT and math.GT

Abstract: The volume conjecture relates the quantum invariant and the hyperbolic geometry. Bonahon-Wong-Yang introduced a new version of the volume conjecture by using the intertwiners between two isomorphic irreducible representations of the skein algebra. The intertwiners are built from surface diffeomorphisms; they formulated the volume conjecture when diffeomorphisms are pseudo-Anosov. In this paper, we explicitly calculate all the intertwiners for the closed torus using an algebraic embedding from the skein algebra of the closed torus to a quantum torus, and show the limit superior related to the trace of these intertwiners is zero. Moreover, we consider the periodic diffeomorphisms for surfaces with negative Euler characteristic, and conjecture the corresponding limit is zero because the simplicial volume of the mapping tori for periodic diffeomorphisms is zero. For the once punctured torus, we make precise calculations for intertwiners and prove our conjecture.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.