An autoencoder for heterotic orbifolds with arbitrary geometry (2212.00821v2)
Abstract: Artificial neural networks have become important to improve the search for admissible string compactifications and characterize them. In this paper we construct the heterotic orbiencoder, a general deep autoencoder to study heterotic orbifold models arising from various Abelian orbifold geometries. Our neural network can be easily trained to successfully encode the large parameter space of many orbifold geometries simultaneously, independently of the statistical dissimilarities of their training features. In particular, we show that our autoencoder is capable of compressing with good accuracy the large parameter space of two promising orbifold geometries in just three parameters. Further, most orbifold models with phenomenologically appealing features appear in bounded regions of this small space. Our contribution hints towards a possible simplification of the classification of (promising) heterotic orbifold models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.