Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Autotuning PID control using Actor-Critic Deep Reinforcement Learning (2212.00013v1)

Published 29 Nov 2022 in cs.LG, cs.AI, and cs.RO

Abstract: This work is an exploratory research concerned with determining in what way reinforcement learning can be used to predict optimal PID parameters for a robot designed for apple harvest. To study this, an algorithm called Advantage Actor Critic (A2C) is implemented on a simulated robot arm. The simulation primarily relies on the ROS framework. Experiments for tuning one actuator at a time and two actuators a a time are run, which both show that the model is able to predict PID gains that perform better than the set baseline. In addition, it is studied if the model is able to predict PID parameters based on where an apple is located. Initial tests show that the model is indeed able to adapt its predictions to apple locations, making it an adaptive controller.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.