Papers
Topics
Authors
Recent
2000 character limit reached

A universal variational framework for parabolic equations and systems (2211.17000v3)

Published 30 Nov 2022 in math.AP and math.CA

Abstract: We propose a variational approach to solve Cauchy problems for parabolic equations and systems independently of regularity theory for solutions. This produces a universal and conceptually simple construction of fundamental solution operators (also called propagators) for which we prove ${L}2$ off-diagonal estimates, which is new under our assumptions. In the special case of systems for which pointwise local bounds hold for weak solutions, this provides Gaussian upper bound for the corresponding fundamental solution. In particular, we obtain a new proof of Aronson's estimates for real equations. The scheme is general enough to allow systems with higher order elliptic parts on full space or second order elliptic parts on Sobolev spaces with boundary conditions. Another new feature is that the control on lower order coefficients is within critical mixed time-space Lebesgue spaces or even mixed Lorentz spaces.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.