Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Physics-Based Machine Learning Approach for Modeling the Temperature-Dependent Yield Strength of Superalloys (2211.16576v1)

Published 29 Nov 2022 in physics.app-ph and cond-mat.mtrl-sci

Abstract: In the pursuit of developing high-temperature alloys with improved properties for meeting the performance requirements of next-generation energy and aerospace demands, integrated computational materials engineering (ICME) has played a crucial role. In this paper a ML approach is presented, capable of predicting the temperature-dependent yield strengths of superalloys, utilizing a bilinear log model. Importantly, the model introduces the parameter break temperature, $T_{break}$, which serves as an upper boundary for operating conditions, ensuring acceptable mechanical performance. In contrast to conventional black-box approaches, our model is based on the underlying fundamental physics, directly built into the model. We present a technique of global optimization, one allowing the concurrent optimization of model parameters over the low-temperature and high-temperature regimes. The results presented extend previous work on high-entropy alloys (HEAs) and offer further support for the bilinear log model and its applicability for modeling the temperature-dependent strength behavior of superalloys as well as HEAs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.