Physics-Based Machine Learning Approach for Modeling the Temperature-Dependent Yield Strength of Superalloys (2211.16576v1)
Abstract: In the pursuit of developing high-temperature alloys with improved properties for meeting the performance requirements of next-generation energy and aerospace demands, integrated computational materials engineering (ICME) has played a crucial role. In this paper a ML approach is presented, capable of predicting the temperature-dependent yield strengths of superalloys, utilizing a bilinear log model. Importantly, the model introduces the parameter break temperature, $T_{break}$, which serves as an upper boundary for operating conditions, ensuring acceptable mechanical performance. In contrast to conventional black-box approaches, our model is based on the underlying fundamental physics, directly built into the model. We present a technique of global optimization, one allowing the concurrent optimization of model parameters over the low-temperature and high-temperature regimes. The results presented extend previous work on high-entropy alloys (HEAs) and offer further support for the bilinear log model and its applicability for modeling the temperature-dependent strength behavior of superalloys as well as HEAs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.