Papers
Topics
Authors
Recent
2000 character limit reached

Freezing-In Gravitational Waves (2211.16513v2)

Published 29 Nov 2022 in hep-ph, astro-ph.CO, gr-qc, hep-th, and nucl-th

Abstract: The thermal plasma in the early universe produced a stochastic gravitational wave (GW) background, which peaks today in the microwave regime and was dubbed the cosmic gravitational microwave background (CGMB). In previous works only single graviton production processes that contribute to the CGMB have been considered. Here we also investigate graviton pair production processes and show that these can lead to a significant contribution if the ratio between the maximum temperature and the Planck mass, $T_{\rm max}/m_{\rm p}$, divided by the internal coupling in the heat bath is large enough. As the dark matter freeze-in production mechanism is conceptually very similar to the GW production mechanism from the primordial thermal plasma, we refer to the latter as ``GW freeze-in production''. We show that quantum gravity effects appear in single graviton production and are smaller by a factor $(T_{\rm max}/m_{\rm p})2$ than the leading order contribution. In our work we explicitly compute the CGMB spectrum within a scalar model with quartic interaction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. L.P. Grishchuk, “Amplification of gravitational waves in an isotropic universe ,” JETP 40, 409 (1975).
  2. A. A. Starobinskii, “Spectrum of relict gravitational radiation and the early state of the universe ,” JETP Letters 30, 682 (719) (1979).
  3. V.A. Rubakov, M.V. Sazhin,  and A.V. Veryaskin, “Graviton creation in the inflationary universe and the grand unification scale,” Physics Letters B 115, 189–192 (1982).
  4. R. Fabbri and M. D. Pollock, “The effect of primordially produced gravitons upon the anisotropy of the cosmological microwave background radiation,” Physics Letters B 125, 445–448 (1983).
  5. S. Y. Khlebnikov and I. I. Tkachev, “Relic gravitational waves produced after preheating,” Phys. Rev. D 56, 653–660 (1997), arXiv:hep-ph/9701423 .
  6. K. Lozanov, Reheating After Inflation (Springer, 2020).
  7. Yohei Ema, Ryusuke Jinno, Kyohei Mukaida,  and Kazunori Nakayama, “Gravitational Effects on Inflaton Decay,” JCAP 05, 038 (2015), arXiv:1502.02475 [hep-ph] .
  8. Yohei Ema, Ryusuke Jinno, Kyohei Mukaida,  and Kazunori Nakayama, “Gravitational particle production in oscillating backgrounds and its cosmological implications,” Phys. Rev. D 94, 063517 (2016), arXiv:1604.08898 [hep-ph] .
  9. Yohei Ema, Ryusuke Jinno,  and Kazunori Nakayama, “High-frequency Graviton from Inflaton Oscillation,” JCAP 09, 015 (2020), arXiv:2006.09972 [astro-ph.CO] .
  10. Edward Witten, ‘‘Cosmic Separation of Phases,” Phys. Rev. D 30, 272–285 (1984).
  11. C. J. Hogan, “Gravitational radiation from cosmological phase transitions,” Mon. Not. Roy. Astron. Soc. 218, 629–636 (1986).
  12. Thibault Damour and Alexander Vilenkin, “Gravitational wave bursts from cosmic strings,” Phys. Rev. Lett. 85, 3761–3764 (2000), arXiv:gr-qc/0004075 .
  13. Thibault Damour and Alexander Vilenkin, “Gravitational wave bursts from cusps and kinks on cosmic strings,” Phys. Rev. D 64, 064008 (2001), arXiv:gr-qc/0104026 .
  14. Arthur Kosowsky, Andrew Mack,  and Tinatin Kahniashvili, “Gravitational radiation from cosmological turbulence,” Phys. Rev. D 66, 024030 (2002), arXiv:astro-ph/0111483 .
  15. Alberto Nicolis, “Relic gravitational waves from colliding bubbles and cosmic turbulence,” Class. Quant. Grav. 21, L27 (2004), arXiv:gr-qc/0303084 .
  16. Chiara Caprini and Ruth Durrer, “Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields,” Phys. Rev. D 74, 063521 (2006), arXiv:astro-ph/0603476 .
  17. Grigol Gogoberidze, Tina Kahniashvili,  and Arthur Kosowsky, “The Spectrum of Gravitational Radiation from Primordial Turbulence,” Phys. Rev. D 76, 083002 (2007), arXiv:0705.1733 [astro-ph] .
  18. Tigran Kalaydzhyan and Edward Shuryak, “Gravity waves generated by sounds from big bang phase transitions,” Phys. Rev. D 91, 083502 (2015), arXiv:1412.5147 [hep-ph] .
  19. Edward W Kolb and Michael Stanley Turner, The early universe, Frontiers in physics (Westview Press, Boulder, CO, 1990).
  20. Sunny Vagnozzi and Abraham Loeb, “The challenge of ruling out inflation via the primordial graviton background,”   (2022), arXiv:2208.14088 [astro-ph.CO] .
  21. Chiara Caprini and Daniel G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,” Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
  22. Andreas Ringwald and Carlos Tamarit, “Revealing the Cosmic History with Gravitational Waves,”   (2022), arXiv:2203.00621 [hep-ph] .
  23. Steven Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley and Sons, New York, 1972).
  24. J. Ghiglieri and M. Laine, “Gravitational wave background from Standard Model physics: Qualitative features,” JCAP 07, 022 (2015), arXiv:1504.02569 [hep-ph] .
  25. J. Ghiglieri, G. Jackson, M. Laine,  and Y. Zhu, “Gravitational wave background from Standard Model physics: Complete leading order,” JHEP 07, 092 (2020), arXiv:2004.11392 [hep-ph] .
  26. Andreas Ringwald, Jan Schütte-Engel,  and Carlos Tamarit, “Gravitational Waves as a Big Bang Thermometer,” JCAP 03, 054 (2021), arXiv:2011.04731 [hep-ph] .
  27. Andrei Sakharov, “Maximum temperature of thermal radiation,” Pisma Zh. Eksp. Teor. Fiz. 3, 012 (439-441).
  28. Gary N. Felder, Lev Kofman,  and Andrei D. Linde, “Instant preheating,” Phys. Rev. D 59, 123523 (1999), arXiv:hep-ph/9812289 .
  29. Mustafa A. Amin, Mark P. Hertzberg, David I. Kaiser,  and Johanna Karouby, “Nonperturbative Dynamics Of Reheating After Inflation: A Review,” Int. J. Mod. Phys. D 24, 1530003 (2014), arXiv:1410.3808 [hep-ph] .
  30. Robert Brandenberger and Patrick Peter, “Bouncing Cosmologies: Progress and Problems,” Found. Phys. 47, 797–850 (2017), arXiv:1603.05834 [hep-th] .
  31. Robert Brandenberger and Ziwei Wang, “Nonsingular Ekpyrotic Cosmology with a Nearly Scale-Invariant Spectrum of Cosmological Perturbations and Gravitational Waves,” Phys. Rev. D 101, 063522 (2020), arXiv:2001.00638 [hep-th] .
  32. Betty X. Hu and Abraham Loeb, “An Upper Limit on the Initial Temperature of the Radiation-Dominated Universe,” JCAP 01, 041 (2021), arXiv:2004.02895 [astro-ph.CO] .
  33. M. Kawasaki, Kazunori Kohri,  and Naoshi Sugiyama, “Cosmological constraints on late time entropy production,” Phys. Rev. Lett. 82, 4168 (1999), arXiv:astro-ph/9811437 .
  34. M. Kawasaki, Kazunori Kohri,  and Naoshi Sugiyama, “MeV scale reheating temperature and thermalization of neutrino background,” Phys. Rev. D 62, 023506 (2000), arXiv:astro-ph/0002127 .
  35. Gian Francesco Giudice, Edward W. Kolb,  and Antonio Riotto, “Largest temperature of the radiation era and its cosmological implications,” Phys. Rev. D 64, 023508 (2001), arXiv:hep-ph/0005123 .
  36. Steen Hannestad, “What is the lowest possible reheating temperature?” Phys. Rev. D70, 043506 (2004), arXiv:astro-ph/0403291 [astro-ph] .
  37. Takuya Hasegawa, Nagisa Hiroshima, Kazunori Kohri, Rasmus S. L. Hansen, Thomas Tram,  and Steen Hannestad, “MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles,” JCAP 12, 012 (2019), arXiv:1908.10189 [hep-ph] .
  38. M. Fukugita and T. Yanagida, “Baryogenesis Without Grand Unification,” Phys. Lett. B174, 45–47 (1986).
  39. Lucía Castells-Tiestos and Jorge Casalderrey-Solana, “Thermal Emission of Gravitational Waves from Weak to Strong Coupling,”   (2022), arXiv:2202.05241 [hep-th] .
  40. P. Klose, M. Laine,  and S. Procacci, “Gravitational wave background from non-Abelian reheating after axion-like inflation,” JCAP 05, 021 (2022a), arXiv:2201.02317 [hep-ph] .
  41. P. Klose, M. Laine,  and S. Procacci, “Gravitational wave background from vacuum and thermal fluctuations during axion-like inflation,”   (2022b), arXiv:2210.11710 [hep-ph] .
  42. S. Y. Choi, J. S. Shim,  and H. S. Song, “Factorization and polarization in linearized gravity,” Phys. Rev. D 51, 2751–2769 (1995), arXiv:hep-th/9411092 .
  43. Mikko Laine and Aleksi Vuorinen, Basics of Thermal Field Theory, Vol. 925 (Springer, 2016) arXiv:1701.01554 [hep-ph] .
  44. T. Kinoshita, “Mass singularities of Feynman amplitudes,” J. Math. Phys. 3, 650–677 (1962).
  45. T. D. Lee and M. Nauenberg, ‘‘Degenerate Systems and Mass Singularities,” Phys. Rev. 133, B1549–B1562 (1964).
  46. M. Laine, “Resonant s𝑠sitalic_s-channel dark matter annihilation at NLO,”   (2022), arXiv:2211.06008 [hep-ph] .
  47. Nora Weickgenannt, Xin-Li Sheng, Enrico Speranza, Qun Wang,  and Dirk H. Rischke, “Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism,” Phys. Rev. D 100, 056018 (2019), arXiv:1902.06513 [hep-ph] .
  48. Nora Weickgenannt, Enrico Speranza, Xin-li Sheng, Qun Wang,  and Dirk H. Rischke, “Generating Spin Polarization from Vorticity through Nonlocal Collisions,” Phys. Rev. Lett. 127, 052301 (2021a), arXiv:2005.01506 [hep-ph] .
  49. Di-Lun Yang, Koichi Hattori,  and Yoshimasa Hidaka, “Effective quantum kinetic theory for spin transport of fermions with collsional effects,” JHEP 07, 070 (2020), arXiv:2002.02612 [hep-ph] .
  50. Nora Weickgenannt, Enrico Speranza, Xin-li Sheng, Qun Wang,  and Dirk H. Rischke, “Derivation of the nonlocal collision term in the relativistic Boltzmann equation for massive spin-1/2 particles from quantum field theory,” Phys. Rev. D 104, 016022 (2021b), arXiv:2103.04896 [nucl-th] .
  51. Xin-Li Sheng, Nora Weickgenannt, Enrico Speranza, Dirk H. Rischke,  and Qun Wang, “From Kadanoff-Baym to Boltzmann equations for massive spin-1/2 fermions,” Phys. Rev. D 104, 016029 (2021), arXiv:2103.10636 [nucl-th] .
  52. D. Bödeker, M. Sangel,  and M. Wörmann, “Equilibration, particle production, and self-energy,” Phys. Rev. D 93, 045028 (2016), arXiv:1510.06742 [hep-ph] .
  53. Adam Alloul, Neil D. Christensen, Céline Degrande, Claude Duhr,  and Benjamin Fuks, “FeynRules 2.0 - A complete toolbox for tree-level phenomenology,” Comput. Phys. Commun. 185, 2250–2300 (2014), arXiv:1310.1921 [hep-ph] .
  54. Neil D. Christensen, Priscila de Aquino, Celine Degrande, Claude Duhr, Benjamin Fuks, Michel Herquet, Fabio Maltoni,  and Steffen Schumann, “A Comprehensive approach to new physics simulations,” Eur. Phys. J. C 71, 1541 (2011), arXiv:0906.2474 [hep-ph] .
  55. Thomas Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,” Comput. Phys. Commun. 140, 418–431 (2001), arXiv:hep-ph/0012260 .
  56. Thomas Hahn, Sebastian Paßehr,  and Christian Schappacher, “FormCalc 9 and Extensions,” PoS LL2016, 068 (2016), arXiv:1604.04611 [hep-ph] .
  57. Barry R. Holstein, “Graviton Physics,” Am. J. Phys. 74, 1002–1011 (2006), arXiv:gr-qc/0607045 .
  58. N. E. J. Bjerrum-Bohr, Barry R. Holstein, Ludovic Planté,  and Pierre Vanhove, “Graviton-Photon Scattering,” Phys. Rev. D 91, 064008 (2015), arXiv:1410.4148 [gr-qc] .
  59. M. Laine and M. Meyer, “Standard Model thermodynamics across the electroweak crossover,” JCAP 07, 035 (2015), arXiv:1503.04935 [hep-ph] .
  60. R. L. Workman et al. (Particle Data Group), “Review of Particle Physics,” PTEP 2022, 083C01 (2022).
  61. Ken’ichi Saikawa and Satoshi Shirai, “Primordial gravitational waves, precisely: The role of thermodynamics in the Standard Model,” JCAP 05, 035 (2018), arXiv:1803.01038 [hep-ph] .
  62. Asher Berlin, Diego Blas, Raffaele Tito D’Agnolo, Sebastian A. R. Ellis, Roni Harnik, Yonatan Kahn,  and Jan Schütte-Engel, “Detecting high-frequency gravitational waves with microwave cavities,” Phys. Rev. D 105, 116011 (2022), arXiv:2112.11465 [hep-ph] .
  63. Nancy Aggarwal et al., “Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies,” Living Rev. Rel. 24, 4 (2021), arXiv:2011.12414 [gr-qc] .
  64. G. Peter Lepage, “Adaptive multidimensional integration: VEGAS enhanced,” J. Comput. Phys. 439, 110386 (2021), arXiv:2009.05112 [physics.comp-ph] .
  65. G. Baym, H. Monien, C. J. Pethick,  and D. G. Ravenhall, “Transverse Interactions and Transport in Relativistic Quark - Gluon and Electromagnetic Plasmas,” Phys. Rev. Lett. 64, 1867–1870 (1990).
  66. Denis Besak and Dietrich Bodeker, “Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results,” JCAP 03, 029 (2012), arXiv:1202.1288 [hep-ph] .
Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: