Papers
Topics
Authors
Recent
2000 character limit reached

Real-time Blind Deblurring Based on Lightweight Deep-Wiener-Network (2211.16356v3)

Published 29 Nov 2022 in cs.CV and eess.IV

Abstract: In this paper, we address the problem of blind deblurring with high efficiency. We propose a set of lightweight deep-wiener-network to finish the task with real-time speed. The Network contains a deep neural network for estimating parameters of wiener networks and a wiener network for deblurring. Experimental evaluations show that our approaches have an edge on State of the Art in terms of inference times and numbers of parameters. Two of our models can reach a speed of 100 images per second, which is qualified for real-time deblurring. Further research may focus on some real-world applications of deblurring with our models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.