Bulk-boundary correspondence and singularity-filling in long-range free-fermion chains (2211.15690v3)
Abstract: The bulk-boundary correspondence relates topologically-protected edge modes to bulk topological invariants, and is well-understood for short-range free-fermion chains. Although case studies have considered long-range Hamiltonians whose couplings decay with a power-law exponent $\alpha$, there has been no systematic study for a free-fermion symmetry class. We introduce a technique for solving gapped, translationally invariant models in the 1D BDI and AIII symmetry classes with $\alpha>1$, linking together the quantized winding invariant, bulk topological string-order parameters and a complete solution of the edge modes. The physics of these chains is elucidated by studying a complex function determined by the couplings of the Hamiltonian: in contrast to the short-range case where edge modes are associated to roots of this function, we find that they are now associated to singularities. A remarkable consequence is that the finite-size splitting of the edge modes depends on the topological winding number, which can be used as a probe of the latter. We furthermore generalise these results by (i) identifying a family of BDI chains with $\alpha<1$ where our results still hold, and (ii) showing that gapless symmetry-protected topological chains can have topological invariants and edge modes when $\alpha -1$ exceeds the dynamical critical exponent.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.