2000 character limit reached
    
  Gibbs Manifolds (2211.15490v1)
    Published 28 Nov 2022 in math.OC, math-ph, math.AG, math.MP, and quant-ph
  
  Abstract: Gibbs manifolds are images of affine spaces of symmetric matrices under the exponential map. They arise in applications such as optimization, statistics and quantum~physics, where they extend the ubiquitous role of toric geometry. The Gibbs variety is the zero locus of all polynomials that vanish on the Gibbs manifold. We compute these polynomials and show that the Gibbs variety is low-dimensional. Our theory is applied to a wide range of scenarios, including matrix pencils and quantum optimal transport.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.