Double Deep Q-Learning in Opponent Modeling (2211.15384v1)
Abstract: Multi-agent systems in which secondary agents with conflicting agendas also alter their methods need opponent modeling. In this study, we simulate the main agent's and secondary agents' tactics using Double Deep Q-Networks (DDQN) with a prioritized experience replay mechanism. Then, under the opponent modeling setup, a Mixture-of-Experts architecture is used to identify various opponent strategy patterns. Finally, we analyze our models in two environments with several agents. The findings indicate that the Mixture-of-Experts model, which is based on opponent modeling, performs better than DDQN.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.