Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Entangled atomic ensemble and an yttrium-iron-garnet sphere in coupled microwave cavities (2211.14914v2)

Published 27 Nov 2022 in quant-ph

Abstract: We present a scheme to generate distant bipartite and tripartite entanglement between an atomic ensemble and an yttrium iron garnet (YIG) sphere in coupled microwave cavities. We consider an atomic ensemble in a single-mode microwave cavity which is coupled with a second single-mode cavity having a YIG sphere. Our system, therefore, has five excitation modes namely cavity-1 photons, atomic ensemble, cavity-2 photons, a magnon and a phonon mode in the YIG sphere. We show that significant bipartite entanglement exists between indirectly coupled subsystems in the cavities, which is robust against temperature. Moreover, we present suitable parameters for a significant tripartite entanglement of ensemble, magnon, and phonon modes. We also demonstrate the existence of tripartite entanglement between magnon and phonon modes of the YIG sphere with indirectly coupled cavity photons. Interestingly, this distant tripartite entanglement is of the same order as previously found for a single-cavity system. We show that cavity-cavity coupling strength affects both the degree and transfer of quantum entanglement between various subsystems. Therefore, an appropriate cavity-cavity coupling optimizes the distant entanglement by increasing the entanglement strength and its robustness against temperature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. H. J. Kimble, The quantum internet, Nature 453, 1023 (2008).
  2. C. Simon, Towards a global quantum network, Nature Photon 11, 678 (2017).
  3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
  4. I. Favero and F. Marquardt, Focus on optomechanics, New Journal of Physics 16, 085006 (2014).
  5. I. Favero and K. Karrai, Optomechanics of deformable optical cavities, Nature Photonics 3, 201 (2009).
  6. P. Meystre, A short walk through quantum optomechanics, Annalen der Physik 525, 215 (2013).
  7. Y.-D. Wang and A. A. Clerk, Using dark modes for high-fidelity optomechanical quantum state transfer, New Journal of Physics 14, 105010 (2012).
  8. A. Mari and J. Eisert, Opto- and electro-mechanical entanglement improved by modulation, New Journal of Physics 14, 075014 (2012).
  9. J. Li, S.-Y. Zhu, and G. Agarwal, Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics, Phys. Rev. Lett. 121, 203601 (2018).
  10. J. Li and S.-Y. Zhu, Entangling two magnon modes via magnetostrictive interaction, New J. Phys. 21, 085001 (2019).
  11. C.-X. Ning and M. Yin, Entangling magnon and superconducting qubit by using a two-mode squeezed-vacuum microwave field, J. Opt. Soc. Am. B 38, 3020 (2021).
  12. Y. Chen, Macroscopic quantum mechanics: theory and experimental concepts of optomechanics, J. Phys. B: At. Mol. Opt. Phys. 46, 104001 (2013).
  13. J.-Q. Liao, Q.-Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A 89, 014302 (2014).
  14. A. A. Rehaily and S. Bougouffa, Entanglement Generation Between Two Mechanical Resonators in Two Optomechanical Cavities, International Journal of Theoretical Physics 56, 1399 (2017).
  15. C. Genes, D. Vitali, and P. Tombesi, Emergence of atom-light-mirror entanglement inside an optical cavity, Phys. Rev. A 77, 050307 (2008a).
  16. S.-B. Zheng, Generation of atomic and field squeezing by adiabatic passage and symmetry breaking, Phys. Rev. A 86, 013828 (2012).
  17. T. Holstein and H. Primakoff, Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet, Phys. Rev. 58, 1098 (1940).
  18. K. Hammerer, A. S. Sørensen, and E. S. Polzik, Quantum interface between light and atomic ensembles, Rev. Mod. Phys. 82, 1041 (2010).
  19. A. Nunnenkamp, K. Børkje, and S. M. Girvin, Single-photon optomechanics, Phys. Rev. Lett. 107, 063602 (2011).
  20. M. Ludwig, B. Kubala, and F. Marquardt, The optomechanical instability in the quantum regime, New Journal of Physics 10, 095013 (2008).
  21. M. Ludwig, K. Hammerer, and F. Marquardt, Entanglement of mechanical oscillators coupled to a nonequilibrium environment, Phys. Rev. A 82, 012333 (2010).
  22. E. X. DeJesus and C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A 35, 5288 (1987).
  23. P. C. Parks and V. Hahn, Stability Theory (Prentice Hall, New York, 1993).
  24. M. B. Plenio, Logarithmic Negativity: A Full Entanglement Monotone That is not Convex, Physical Review Letters 95, 090503 (2005).
  25. G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
  26. R. Simon and P. Horodecki, Separability Criterion for Continuous Variable Systems, Phys. Rev. Lett. 84, 2726 (2000).
  27. V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Physical Review A 61, 052306 (2000).
  28. Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity, Phys. Rev. A 77, 042308 (2008).
  29. Y. S. Teo and J. Gong, Double Rabi model in the ultra-strong coupling regime: entanglement and chaos beyond the rotating wave approximation, J. Phys. B: At. Mol. Opt. Phys. 46, 235504 (2013).
  30. H. Tan and J. Li, Einstein-Podolsky-Rosen entanglement and asymmetric steering between distant macroscopic mechanical and magnonic systems, Phys. Rev. Research 3, 013192 (2021).
  31. B. Hussain, S. Qamar, and M. Irfan, Entanglement enhancement in cavity magnomechanics by an optical parametric amplifier, Phys. Rev. A 105, 063704 (2022).
  32. T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64, 012304 (2001).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.