Papers
Topics
Authors
Recent
2000 character limit reached

Fast method and convergence analysis of fractional magnetohydrodynamic coupled flow and heat transfer model for generalized second-grade fluid (2211.14593v1)

Published 26 Nov 2022 in math.NA and cs.NA

Abstract: In this paper, we first establish a new fractional magnetohydrodynamic (MHD) coupled flow and heat transfer model for a generalized second-grade fluid. This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law. The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization. The fully discrete scheme is proved to be stable and convergent with an accuracy of $O(\tau2+N{-r})$, where $\tau$ is the time step size and $N$ is the polynomial degree. To reduce the memory requirements and computational cost, a fast method is developed, which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line. And the strict convergence of the numerical scheme with this fast method is proved. We present the results of several numerical experiments to verify the effectiveness of the proposed method. Finally, we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium. The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.