Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Homology-constrained vector quantization entropy regularizer (2211.14363v1)

Published 25 Nov 2022 in cs.LG

Abstract: This paper describes an entropy regularization term for vector quantization (VQ) based on the analysis of persistent homology of the VQ embeddings. Higher embedding entropy positively correlates with higher codebook utilization, mitigating overfit towards the identity and codebook collapse in VQ-based autoencoders [1]. We show that homology-constrained regularization is an effective way to increase entropy of the VQ process (approximated to input entropy) while preserving the approximated topology in the quantized latent space, averaged over mini batches. This work further explores some patterns of persistent homology diagrams of latents formed by vector quantization. We implement and test the proposed algorithm as a module integrated into a sample VQ-VAE. Linked code repository provides a functioning implementation of the proposed architecture, referred to as homology-constrained vector quantization (HC-VQ) further in this work.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.