Scalar field dark matter and dark energy: a hybrid model for the dark sector (2211.13653v2)
Abstract: Diverse cosmological and astrophysical observations strongly hint at the presence of dark matter and dark energy in the Universe. One of the main goals of Cosmology is to explain the nature of these two components. It may well be that both dark matter and dark energy have a common origin. In this paper, we develop a model in which the dark sector arises due to an interplay between two interacting scalar fields. Employing a hybrid inflation potential, we show that the model can be described as a system of a pressureless fluid coupled to a light scalar field. We discuss this setup's cosmological consequences and the observational signatures in the cosmic microwave background radiation and the large-scale structures.
- P. J. E. Peebles, Cosmology’s Century (Princeton University Press (2020)).
- A. Joyce, L. Lombriser, and F. Schmidt, Dark Energy Versus Modified Gravity, Ann. Rev. Nucl. Part. Sci. 66, 95 (2016), arXiv:1601.06133 [astro-ph.CO] .
- G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rept. 267, 195 (1996), arXiv:hep-ph/9506380 .
- R. Holman, G. Lazarides, and Q. Shafi, Axions and the Dark Matter of the Universe, Phys. Rev. D 27, 995 (1983).
- D. J. H. Chung, E. W. Kolb, and A. Riotto, Superheavy dark matter, Phys. Rev. D 59, 023501 (1998), arXiv:hep-ph/9802238 .
- D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO] .
- R. Hlozek, D. J. E. Marsh, and D. Grin, Using the Full Power of the Cosmic Microwave Background to Probe Axion Dark Matter, Mon. Not. Roy. Astron. Soc. 476, 3063 (2018), arXiv:1708.05681 [astro-ph.CO] .
- L. Roszkowski, E. M. Sessolo, and S. Trojanowski, WIMP dark matter candidates and searches—current status and future prospects, Rept. Prog. Phys. 81, 066201 (2018), arXiv:1707.06277 [hep-ph] .
- G. D’Amico, T. Hamill, and N. Kaloper, Quantum field theory of interacting dark matter and dark energy: Dark monodromies, Phys. Rev. D 94, 103526 (2016), arXiv:1605.00996 [hep-th] .
- M. Carrillo González and M. Trodden, Field Theories and Fluids for an Interacting Dark Sector, Phys. Rev. D 97, 043508 (2018), [Erratum: Phys.Rev.D 101, 089901 (2020)], arXiv:1705.04737 [astro-ph.CO] .
- D. Benisty and E. I. Guendelman, Unified dark energy and dark matter from dynamical spacetime, Phys. Rev. D 98, 023506 (2018), arXiv:1802.07981 [gr-qc] .
- R. Brandenberger, J. Fröhlich, and R. Namba, Unified Dark Matter, Dark Energy and baryogenesis via a “cosmological wetting transition”, JCAP 09, 069, arXiv:1907.06353 [hep-th] .
- R. Brandenberger and J. Fröhlich, Dark Energy, Dark Matter and Baryogenesis from a Model of a Complex Axion Field, JCAP 04, 030, arXiv:2004.10025 [hep-th] .
- J. P. Johnson and S. Shankaranarayanan, Cosmological perturbations in the interacting dark sector: Mapping fields and fluids, Phys. Rev. D 103, 023510 (2021), arXiv:2006.04618 [gr-qc] .
- P. M. Sá, Late-time evolution of the Universe within a two-scalar-field cosmological model, Phys. Rev. D 103, 123517 (2021), arXiv:2103.01693 [gr-qc] .
- J. P. Johnson, A. Sangwan, and S. Shankaranarayanan, Observational constraints and predictions of the interacting dark sector with field-fluid mapping, JCAP 01 (01), 024, arXiv:2102.12367 [astro-ph.CO] .
- A. D. Linde, Hybrid inflation, Phys. Rev. D 49, 748 (1994), arXiv:astro-ph/9307002 .
- M. Axenides and K. Dimopoulos, Hybrid dark sector: Locked quintessence and dark matter, JCAP 07, 010, arXiv:hep-ph/0401238 .
- M. S. Turner, Coherent scalar-field oscillations in an expanding universe, Phys. Rev. D 28, 1243 (1983).
- S. Folkerts, C. Germani, and J. Redondo, Axion Dark Matter and Planck favor non-minimal couplings to gravity, Phys. Lett. B 728, 532 (2014), arXiv:1304.7270 [hep-ph] .
- W. Hu, R. Barkana, and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85, 1158 (2000), arXiv:astro-ph/0003365 .
- E. W. Kolb, D. J. H. Chung, and A. Riotto, WIMPzillas!, AIP Conf. Proc. 484, 91 (1999), arXiv:hep-ph/9810361 .
- L. Kofman, A. D. Linde, and A. A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56, 3258 (1997), arXiv:hep-ph/9704452 .
- D. H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314, 1 (1999), arXiv:hep-ph/9807278 .
- P. G. Ferreira and M. Joyce, Cosmology with a primordial scaling field, Phys. Rev. D 58, 023503 (1998), arXiv:astro-ph/9711102 .
- E. M. Teixeira, A. Nunes, and N. J. Nunes, Conformally Coupled Tachyonic Dark Energy, Phys. Rev. D 100, 043539 (2019), arXiv:1903.06028 [gr-qc] .
- V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215, 203 (1992).
- C. van de Bruck and J. Morrice, Disformal couplings and the dark sector of the universe, JCAP 04, 036, arXiv:1501.03073 [gr-qc] .
- C. van de Bruck and E. M. Teixeira, Dark D-Brane Cosmology: from background evolution to cosmological perturbations, Phys. Rev. D 102, 103503 (2020), arXiv:2007.15414 [gr-qc] .
- J. Mifsud and C. Van De Bruck, Probing the imprints of generalized interacting dark energy on the growth of perturbations, JCAP 11, 001, arXiv:1707.07667 [astro-ph.CO] .
- S. Tsujikawa, Matter density perturbations and effective gravitational constant in modified gravity models of dark energy, Phys. Rev. D 76, 023514 (2007), arXiv:0705.1032 [astro-ph] .
- L. Amendola, Linear and non-linear perturbations in dark energy models, Phys. Rev. D 69, 103524 (2004), arXiv:astro-ph/0311175 .
- C. Wetterich, The Cosmon model for an asymptotically vanishing time dependent cosmological ’constant’, Astron. Astrophys. 301, 321 (1995), arXiv:hep-th/9408025 .
- L. Amendola, Coupled quintessence, Phys. Rev. D 62, 043511 (2000), arXiv:astro-ph/9908023 .
- A. Gómez-Valent, V. Pettorino, and L. Amendola, Update on coupled dark energy and the H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension, Phys. Rev. D 101, 123513 (2020), arXiv:2004.00610 [astro-ph.CO] .
- E. M. Teixeira, A. Nunes, and N. J. Nunes, Disformally Coupled Quintessence, Phys. Rev. D 101, 083506 (2020), arXiv:1912.13348 [gr-qc] .
- L. Amendola, Dark energy and the Boomerang data, Phys. Rev. Lett. 86, 196 (2001), arXiv:astro-ph/0006300 .
- V. Pettorino, Testing modified gravity with Planck: the case of coupled dark energy, Phys. Rev. D 88, 063519 (2013), arXiv:1305.7457 [astro-ph.CO] .
- J.-Q. Xia, New Limits on Coupled Dark Energy from Planck, JCAP 11, 022, arXiv:1311.2131 [astro-ph.CO] .
- C. van de Bruck, J. Mifsud, and J. Morrice, Testing coupled dark energy models with their cosmological background evolution, Phys. Rev. D 95, 043513 (2017), arXiv:1609.09855 [astro-ph.CO] .
- C. Van De Bruck and J. Mifsud, Searching for dark matter - dark energy interactions: going beyond the conformal case, Phys. Rev. D 97, 023506 (2018), arXiv:1709.04882 [astro-ph.CO] .
- P. A. R. Ade et al. (Planck), Planck 2015 results. XIV. Dark energy and modified gravity, Astron. Astrophys. 594, A14 (2016), arXiv:1502.01590 [astro-ph.CO] .
- N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- J. Lesgourgues, The cosmic linear anisotropy solving system (class) i: Overview (2011a), arXiv:1104.2932 [astro-ph.IM] .
- D. Blas, J. Lesgourgues, and T. Tram, The cosmic linear anisotropy solving system (class). part ii: Approximation schemes, Journal of Cosmology and Astroparticle Physics 2011 (07), 034–034.
- J. Lesgourgues, The cosmic linear anisotropy solving system (class) iii: Comparision with camb for lambdacdm (2011b), arXiv:1104.2934 [astro-ph.CO] .
- V. Pettorino and C. Baccigalupi, Coupled and Extended Quintessence: theoretical differences and structure formation, Phys. Rev. D 77, 103003 (2008), arXiv:0802.1086 [astro-ph] .
- E. V. Linder, Cosmic Growth and Expansion Conjoined, Astropart. Phys. 86, 41 (2017), arXiv:1610.05321 [astro-ph.CO] .
- E. Di Valentino et al., Cosmology Intertwined III: fσ8𝑓subscript𝜎8f\sigma_{8}italic_f italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, Astropart. Phys. 131, 102604 (2021), arXiv:2008.11285 [astro-ph.CO] .
- E. Di Valentino, A. Melchiorri, and J. Silk, Cosmological constraints in extended parameter space from the Planck 2018 Legacy release, JCAP 01, 013, arXiv:1908.01391 [astro-ph.CO] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.