Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Language: Learning Commonsense from Images for Reasoning (2010.05001v1)

Published 10 Oct 2020 in cs.CL and cs.AI

Abstract: This paper proposes a novel approach to learn commonsense from images, instead of limited raw texts or costly constructed knowledge bases, for the commonsense reasoning problem in NLP. Our motivation comes from the fact that an image is worth a thousand words, where richer scene information could be leveraged to help distill the commonsense knowledge, which is often hidden in languages. Our approach, namely Loire, consists of two stages. In the first stage, a bi-modal sequence-to-sequence approach is utilized to conduct the scene layout generation task, based on a text representation model ViBERT. In this way, the required visual scene knowledge, such as spatial relations, will be encoded in ViBERT by the supervised learning process with some bi-modal data like COCO. Then ViBERT is concatenated with a pre-trained LLM to perform the downstream commonsense reasoning tasks. Experimental results on two commonsense reasoning problems, i.e. commonsense question answering and pronoun resolution, demonstrate that Loire outperforms traditional language-based methods. We also give some case studies to show what knowledge is learned from images and explain how the generated scene layout helps the commonsense reasoning process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Wanqing Cui (7 papers)
  2. Yanyan Lan (87 papers)
  3. Liang Pang (94 papers)
  4. Jiafeng Guo (161 papers)
  5. Xueqi Cheng (274 papers)
Citations (5)