Papers
Topics
Authors
Recent
2000 character limit reached

Propagation of chaos and Poisson Hypothesis for replica mean-field models of intensity-based neural networks (2211.11490v2)

Published 21 Nov 2022 in math.PR and math.DS

Abstract: Neural computations arising from myriads of interactions between spiking neurons can be modeled as network dynamics with punctuate interactions. However, most relevant dynamics do not allow for computational tractability. To circumvent this difficulty, the Poisson Hypothesis regime replaces interaction times between neurons by Poisson processes. We prove that the Poisson Hypothesis holds at the limit of an infinite number of replicas in the replica-mean-field model, which consists of randomly interacting copies of the network of interest. The proof is obtained through a novel application of the Chen-Stein method to the case of a random sum of Bernoulli random variables and a fixed point approach to prove a law of large numbers for exchangeable random variables.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.