Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bidder Subset Selection Problem in Auction Design (2211.10969v1)

Published 20 Nov 2022 in cs.GT

Abstract: Motivated by practical concerns in the online advertising industry, we study a bidder subset selection problem in single-item auctions. In this problem, a large pool of candidate bidders have independent values sampled from known prior distributions. The seller needs to pick a subset of bidders and run a given auction format on the selected subset to maximize her expected revenue. We propose two frameworks for the subset restrictions: (i) capacity constraint on the set of selected bidders; and (ii) incurred costs for the bidders invited to the auction. For the second-price auction with anonymous reserve (SPA-AR), we give constant approximation polynomial time algorithms in both frameworks (in the latter framework under mild assumptions about the market). Our results are in stark contrast to the previous work of Mehta, Nadav, Psomas, Rubinstein [NeurIPS 2020], who showed hardness of approximation for the SPA without a reserve price. We also give complimentary approximation results for other well-studied auction formats such as anonymous posted pricing and sequential posted pricing. On a technical level, we find that the revenue of SPA-AR as a set function $f(S)$ of its bidders $S$ is fractionally-subadditive but not submodular. Our bidder selection problem with invitation costs is a natural question about (approximately) answering a demand oracle for $f(\cdot)$ under a given vector of costs, a common computational assumption in the literature on combinatorial auctions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube