Crossed modules, non-abelian extensions of associative conformal algebras and Wells exact sequences (2211.10842v1)
Abstract: In this paper, we introduce the notions of crossed module of associative conformal algebras, 2-term strongly homotopy associative conformal algebras, and discuss the relationship between them and the 3-th Hochschild cohomology of associative conformal algebras. We classify the non-abelian extensions by introducing the non-abelian cohomology. We show that non-abelian extensions of an associative conformal algebra can be viewed as Maurer-Cartan elements of a suitable differential graded Lie algebra, and prove that the Deligne groupoid of this differential graded Lie algebra corresponds one to one with the non-abelian cohomology. Based on this classification, we study the inducibility of a pair of automorphisms about a non-abelian extension of associative conformal algebras, and give the fundamental sequence of Wells in the context of associative conformal algebras. Finally, we consider the extensibility of a pair of derivations about an abelian extension of associative conformal algebras, and give an exact sequence of Wells type.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.