Papers
Topics
Authors
Recent
2000 character limit reached

Index Theory of Chiral Unitaries and Split-Step Quantum Walks (2211.10601v4)

Published 19 Nov 2022 in math.OA, math-ph, math.KT, and math.MP

Abstract: Building from work by Cedzich et al. and Suzuki et al., we consider topological and index-theoretic properties of chiral unitaries, which are an abstraction of the time evolution of a chiral-symmetric self-adjoint operator. Split-step quantum walks provide a rich class of examples. We use the index of a pair of projections and the Cayley transform to define topological indices for chiral unitaries on both Hilbert spaces and Hilbert $C*$-modules. In the case of the discrete time evolution of a Hamiltonian-like operator, we relate the index for chiral unitaries to the index of the Hamiltonian. We also prove a double-sided winding number formula for anisotropic split-step quantum walks on Hilbert $C*$-modules, extending a result by Matsuzawa.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.