Papers
Topics
Authors
Recent
Search
2000 character limit reached

DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation

Published 18 Nov 2022 in cs.IR | (2211.10486v2)

Abstract: Graph Neural Network (GNN) based recommender systems have been attracting more and more attention in recent years due to their excellent performance in accuracy. Representing user-item interactions as a bipartite graph, a GNN model generates user and item representations by aggregating embeddings of their neighbors. However, such an aggregation procedure often accumulates information purely based on the graph structure, overlooking the redundancy of the aggregated neighbors and resulting in poor diversity of the recommended list. In this paper, we propose diversifying GNN-based recommender systems by directly improving the embedding generation procedure. Particularly, we utilize the following three modules: submodular neighbor selection to find a subset of diverse neighbors to aggregate for each GNN node, layer attention to assign attention weights for each layer, and loss reweighting to focus on the learning of items belonging to long-tail categories. Blending the three modules into GNN, we present DGRec(Diversified GNN-based Recommender System) for diversified recommendation. Experiments on real-world datasets demonstrate that the proposed method can achieve the best diversity while keeping the accuracy comparable to state-of-the-art GNN-based recommender systems.

Citations (68)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.