Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient Feature Compression for Edge-Cloud Systems

Published 17 Nov 2022 in eess.IV | (2211.09897v1)

Abstract: Optimizing computation in an edge-cloud system is an important yet challenging problem. In this paper, we consider a three-way trade-off between bit rate, classification accuracy, and encoding complexity in an edge-cloud image classification system. Our method includes a new training strategy and an efficient encoder architecture to improve the rate-accuracy performance. Our design can also be easily scaled according to different computation resources on the edge device, taking a step towards achieving a rate-accuracy-complexity (RAC) trade-off. Under various settings, our feature coding system consistently outperforms previous methods in terms of the RAC performance.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.