Stability of topological descriptors for neuronal morphology (2211.09058v1)
Abstract: The topological morphology descriptor of a neuron is a multiset of intervals associated to the shape of the neuron represented as a tree. In practice, topological morphology descriptors are vectorized using persistence images, which can help classify and characterize the morphology of broad groups of neurons. We study the stability of topological morphology descriptors under small changes to neuronal morphology. We show that the persistence diagram arising from the topological morphology descriptor of a neuron is stable for the 1-Wasserstein distance against a range of perturbations to the tree. These results guarantee that persistence images of topological morphology descriptors are stable against the same set of perturbations and reliable.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.