Dark Matter or Regular Matter in Neutron Stars? How to tell the difference from the coalescence of compact objects (2211.08590v1)
Abstract: The mirror twin Higgs model is a candidate for (strongly-interacting) complex dark matter, which mirrors SM interactions with heavier quark masses. A consequence of this model are mirror neutron stars -- exotic stars made entirely of mirror matter, which are significantly smaller than neutron stars and electromagnetically dark. This makes mergers of two mirror neutron stars detectable and distinguishable in gravitational wave observations, but can we observationally distinguish between regular neutron stars and those that may contain some mirror matter? This is the question we study in this paper, focusing on two possible realizations of mirror matter coupled to standard model matter within a compact object: (i) mirror matter captured by a neutron star and (ii) mirror neutron star-neutron star coalescences. Regarding (i), we find that (non-rotating) mirror-matter-admixed neutron stars no longer have a single mass-radius sequence, but rather exist in a two-dimensional mass-radius plane. Regarding (ii), we find that binary systems with mirror neutron stars would span a much wider range of chirp masses and completely different binary Love relations, allowing merger remnants to be very light black holes. The implications of this are that gravitational wave observations with advanced LIGO and Virgo, and X-ray observations with NICER, could detect or constrain the existence of mirror matter through searches with wider model and parameter priors.
- M. Lisanti, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (2017) pp. 399–446, arXiv:1603.03797 [hep-ph] .
- T. Lin, PoS 333, 009 (2019), arXiv:1904.07915 [hep-ph] .
- P. Mukhopadhyay and J. Schaffner-Bielich, Phys. Rev. D 93, 083009 (2016), arXiv:1511.00238 [astro-ph.HE] .
- B. Kain, Phys. Rev. D 103, 043009 (2021), arXiv:2102.08257 [gr-qc] .
- D. Sen and A. Guha, Mon. Not. Roy. Astron. Soc. 504, 3354 (2021), arXiv:2104.06141 [hep-ph] .
- J. C. Jiménez and E. S. Fraga, Universe 8, 34 (2022), arXiv:2111.00091 [hep-ph] .
- C. J. Horowitz and S. Reddy, Phys. Rev. Lett. 122, 071102 (2019), arXiv:1902.04597 [astro-ph.HE] .
- S. Maedan, PTEP 2020, 033B07 (2020), arXiv:1908.00711 [hep-ph] .
- C. Kouvaris and N. G. Nielsen, Phys. Rev. D 92, 063526 (2015), arXiv:1507.00959 [hep-ph] .
- M. I. Gresham and K. M. Zurek, Phys. Rev. D 99, 083008 (2019), arXiv:1809.08254 [astro-ph.CO] .
- J. Alexander et al. (2016) arXiv:1608.08632 [hep-ph] .
- D. Curtin and J. Setford, JHEP 03, 041 (2020), arXiv:1909.04072 [hep-ph] .
- D. Curtin and J. Setford, JHEP 03, 166 (2021), arXiv:2010.00601 [hep-ph] .
- M. Ryan and D. Radice, Phys. Rev. D 105, 115034 (2022), arXiv:2201.05626 [astro-ph.HE] .
- S. I. Blinnikov and M. Y. Khlopov, Sov. J. Nucl. Phys. 36, 472 (1982).
- S. I. Blinnikov and M. Khlopov, Sov. Astron. 27, 371 (1983).
- G. Aad et al. (ATLAS), JHEP 04, 165 (2021), arXiv:2102.01444 [hep-ex] .
- L. Blanchet, Living Rev. Rel. 17, 2 (2014), arXiv:1310.1528 [gr-qc] .
- B. Kain, Phys. Rev. D 102, 023001 (2020), arXiv:2007.04311 [gr-qc] .
- F. Sandin and P. Ciarcelluti, Astropart. Phys. 32, 278 (2009), arXiv:0809.2942 [astro-ph] .
- P. Ciarcelluti and F. Sandin, Phys. Lett. B 695, 19 (2011), arXiv:1005.0857 [astro-ph.HE] .
- A. Walker-Loud et al., Phys. Rev. D 79, 054502 (2009), arXiv:0806.4549 [hep-lat] .
- J. D. Bratt et al. (LHPC), Phys. Rev. D 82, 094502 (2010), arXiv:1001.3620 [hep-lat] .
- S. N. Syritsyn et al., Phys. Rev. D 81, 034507 (2010), arXiv:0907.4194 [hep-lat] .
- M. Albaladejo and J. A. Oller, Phys. Rev. D 86, 034003 (2012), arXiv:1205.6606 [hep-ph] .
- M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019), arXiv:1912.05705 [astro-ph.HE] .
- T. E. Riley et al., Astrophys. J. Lett. 887, L21 (2019), arXiv:1912.05702 [astro-ph.HE] .
- M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021), arXiv:2105.06979 [astro-ph.HE] .
- T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021), arXiv:2105.06980 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 121, 161101 (2018a), arXiv:1805.11581 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 011001 (2019), arXiv:1805.11579 [gr-qc] .
- G. Aad et al. (ATLAS), Phys. Rev. D 101, 012002 (2020), arXiv:1909.02845 [hep-ex] .
- K. Yagi and N. Yunes, Phys. Rev. D 88, 023009 (2013), arXiv:1303.1528 [gr-qc] .
- T. Hinderer, Astrophys. J. 677, 1216 (2008), arXiv:0711.2420 [astro-ph] .
- S. Chandrasekhar, Astrophys. J. 140, 417 (1964), [Erratum: Astrophys.J. 140, 1342 (1964)].
- J. E. Nyhan and B. Kain, Phys. Rev. D 105, 123016 (2022), arXiv:2206.07715 [gr-qc] .
- S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley and Sons, New York, 1972).
- N. K. Glendenning, Compact Stars (Springer, New York, 2000).
- E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502 (2008), arXiv:0709.1915 [astro-ph] .
- M. Favata, Phys. Rev. Lett. 112, 101101 (2014), arXiv:1310.8288 [gr-qc] .
- K. Yagi and N. Yunes, Phys. Rev. D 89, 021303 (2014), arXiv:1310.8358 [gr-qc] .
- K. Yagi and N. Yunes, Class. Quant. Grav. 33, 13LT01 (2016), arXiv:1512.02639 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 121, 161101 (2018b), arXiv:1805.11581 [gr-qc] .
- U. H. Gerlach, Phys. Rev. 172, 1325 (1968).
- B. Kampfer, J. Phys. A 14, L471 (1981).
- H. T. Cromartie et al. (NANOGrav), Nature Astron. 4, 72 (2019), arXiv:1904.06759 [astro-ph.HE] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.