Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

SSM-Net: feature learning for Music Structure Analysis using a Self-Similarity-Matrix based loss (2211.08141v1)

Published 15 Nov 2022 in cs.SD, cs.LG, and eess.AS

Abstract: In this paper, we propose a new paradigm to learn audio features for Music Structure Analysis (MSA). We train a deep encoder to learn features such that the Self-Similarity-Matrix (SSM) resulting from those approximates a ground-truth SSM. This is done by minimizing a loss between both SSMs. Since this loss is differentiable w.r.t. its input features we can train the encoder in a straightforward way. We successfully demonstrate the use of this training paradigm using the Area Under the Curve ROC (AUC) on the RWC-Pop dataset.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube