Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Self-Similarity-Based and Novelty-based loss for music structure analysis (2309.02243v1)

Published 5 Sep 2023 in cs.SD, cs.LG, and eess.AS

Abstract: Music Structure Analysis (MSA) is the task aiming at identifying musical segments that compose a music track and possibly label them based on their similarity. In this paper we propose a supervised approach for the task of music boundary detection. In our approach we simultaneously learn features and convolution kernels. For this we jointly optimize -- a loss based on the Self-Similarity-Matrix (SSM) obtained with the learned features, denoted by SSM-loss, and -- a loss based on the novelty score obtained applying the learned kernels to the estimated SSM, denoted by novelty-loss. We also demonstrate that relative feature learning, through self-attention, is beneficial for the task of MSA. Finally, we compare the performances of our approach to previously proposed approaches on the standard RWC-Pop, and various subsets of SALAMI.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube