Papers
Topics
Authors
Recent
2000 character limit reached

Experimental study of Neural ODE training with adaptive solver for dynamical systems modeling

Published 13 Nov 2022 in cs.LG and nlin.CD | (2211.06972v1)

Abstract: Neural Ordinary Differential Equations (ODEs) was recently introduced as a new family of neural network models, which relies on black-box ODE solvers for inference and training. Some ODE solvers called adaptive can adapt their evaluation strategy depending on the complexity of the problem at hand, opening great perspectives in machine learning. However, this paper describes a simple set of experiments to show why adaptive solvers cannot be seamlessly leveraged as a black-box for dynamical systems modelling. By taking the Lorenz'63 system as a showcase, we show that a naive application of the Fehlberg's method does not yield the expected results. Moreover, a simple workaround is proposed that assumes a tighter interaction between the solver and the training strategy. The code is available on github: https://github.com/Allauzen/adaptive-step-size-neural-ode

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.