Anomalies and the Green-Schwarz Mechanism (2211.06467v2)
Abstract: Anomalies are a very powerful tool in constraining theories beyond the standard model. We give a pedagogical overview of some topics illustrating the important role played by spacetime anomalies in string theory. After discussing the general problem of anomaly cancellation in quantum field theory, the focus is set on the cancellation of anomalies in type-I string theory through the Green-Schwarz mechanism. The notion of anomaly inflow is also reviewed, as well as its application to the evaluation of D-brane anomalous couplings. Finally, we briefly comment on recent developments concerning the reformulation of anomalies in the language of category theory.
- L. Álvarez-Gaumé, An Introduction to Anomalies, in “Fundamental Problems of Gauge Field Theory”, Plenum Press, 1985. R. A. Bertlmann, Anomalies in Quantum Field Theory, Oxford University Press, 1996. K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies, Oxford University Press, 2004. A. Bilal, Lectures on Anomalies, arXiv:0802.0634 [hep-th].
- B. Zumino, Chiral anomalies and differential geometry, in “Relativity, groups and topology”, Elsevier (1983). M. F. Atiyah and I. M. Singer, Dirac Operators Coupled to Vector Potentials, Proc. Nat. Acad. Sci. 81 (1984) 2597. B. Zumino, Y. S. Wu and A. Zee, Chiral Anomalies, Higher Dimensions, and Differential Geometry, Nucl. Phys. B 239 (1984) 477.
- L. Álvarez-Gaumé and M. Á. Vázquez-Mozo, Topics in String Theory and Quantum Gravity, in: “Gravitation and Quantizations”, Proceedings of the 1992 Les Houches Summer School, Elsevier 1995 [hep-th/9212006]. J. Polchinski, String Theory vols. I & II, Cambridge 1998. K. Becker, M. Becker and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction, Cambridge 2006. L. E. Ibáñez and Á. M. Uranga, String Theory and Particle Physics: An Introduction to String Phenomenology, Cambridge 2012. E. Kiritsis, String Theory in a Nutshell, Princeton 2019.
- X. Dai and D. S. Freed, η𝜂\etaitalic_η invariants and determinant lines, J. Math. Phys. 35 (1994) 5155 [arXiv:hep-th/9405012 [hep-th]]. E. Witten and K. Yonekura, Anomaly Inflow and the η𝜂\etaitalic_η-Invariant, in: “Memorial Volume for Shoucheng Zhang”, World Scientific 2021 [arXiv:1909.08775 [hep-th]].
- B. Coecke, É. O. Paquette, Categories for the Practicing Physicist, in: “New Structures in Physics” ed. B. Coecke, Springer 2011.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.