Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Randomization of Short-Rate Models, Analytic Pricing and Flexibility in Controlling Implied Volatilities (2211.05014v2)

Published 9 Nov 2022 in q-fin.CP, q-fin.MF, q-fin.PM, q-fin.PR, and q-fin.RM

Abstract: We focus on extending existing short-rate models, enabling control of the generated implied volatility while preserving analyticity. We achieve this goal by applying the Randomized Affine Diffusion (RAnD) method to the class of short-rate processes under the Heath-Jarrow-Morton framework. Under arbitrage-free conditions, the model parameters can be exogenously stochastic, thus facilitating additional degrees of freedom that enhance the calibration procedure. We show that with the randomized short-rate models, the shapes of implied volatility can be controlled and significantly improve the quality of the model calibration, even for standard 1D variants. In particular, we illustrate that randomization applied to the Hull-White model leads to dynamics of the local volatility type, with the prices for standard volatility-sensitive derivatives explicitly available. The randomized Hull-White (rHW) model offers an almost perfect calibration fit to the swaption implied volatilities.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.