Geometric Properties of Generalized Hypergeometric Functions (2211.04950v2)
Abstract: In this article, Using Hadamard product for $4F_3\left({a_1,\, a_2,\, a_3,\, a_4}{b_1,\, b_2,\, b_3};z\right)$ hypergeometric function with normalized analytic functions in the open unit disc, an operator $\mathcal{I}{a_1,a_2,a_3,a_4}_{b_1,b_2,b_3}(f)(z)$ is introduced. Geometric properties of $4F_3\left({a_1,\, a_2,\, a_3,\, a_4}{b_1,\, b_2,\, b_3};z\right)$ hypergeometric functions are discussed for various subclasses of univalent functions. Also, we consider an operator $\mathcal{I}{ a,\frac{b}{4},\frac{b+1}{4},\frac{b+2}{4},\frac{b+3}{4} }{ \frac{c}{4}, \frac{c+1}{4}, \frac{c+2}{4},\frac{c+3}{4} }(f)(z)$$= z\, _5F_4\left({a,\frac{b}{4},\frac{b+1}{4},\frac{b+2}{4},\frac{b+3}{4}}{\frac{c}{4}, \frac{c+1}{4}, \frac{c+2}{4},\frac{c+3}{4}}; z\right)f(z)$, where, $_5F_4(z)$ hypergeometric function and the $$ is usual Hadamard product. In the main results, conditions are determined on $ a,b,$ and $c$ such that the function $z\, 5F_4\left({a,\frac{b}{4},\frac{b+1}{4},\frac{b+2}{4},\frac{b+3}{4}}{\frac{c}{4}, \frac{c+1}{4}, \frac{c+2}{4},\frac{c+3}{4}}; z\right)$ is in the each of the classes $ \mathcal{S}{*}_{\lambda} $, $ \mathcal{C}{\lambda}$, $UCV$ and $\mathcal{S}_p$. Subsequently, conditions on $a,\,b,\,c,\, \lambda,$ and $\beta$ are determined using the integral operator such that functions belonging to $\mathcal{R}(\beta)$ and $\mathcal{S}$ are mapped onto each of the classes $\mathcal{S}*\lambda$, $\mathcal{C}_{\lambda}$, $UCV$, and $\mathcal{S}_p$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.