Papers
Topics
Authors
Recent
2000 character limit reached

Quantum-probabilistic Hamiltonian learning for generative modelling & anomaly detection (2211.03803v3)

Published 7 Nov 2022 in quant-ph, cs.LG, hep-ex, hep-ph, and physics.data-an

Abstract: The Hamiltonian of an isolated quantum mechanical system determines its dynamics and physical behaviour. This study investigates the possibility of learning and utilising a system's Hamiltonian and its variational thermal state estimation for data analysis techniques. For this purpose, we employ the method of Quantum Hamiltonian-based models for the generative modelling of simulated Large Hadron Collider data and demonstrate the representability of such data as a mixed state. In a further step, we use the learned Hamiltonian for anomaly detection, showing that different sample types can form distinct dynamical behaviours once treated as a quantum many-body system. We exploit these characteristics to quantify the difference between sample types. Our findings show that the methodologies designed for field theory computations can be utilised in machine learning applications to employ theoretical approaches in data analysis techniques.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. X.-L. Qi and D. Ranard, Quantum 3, 159 (2019).
  2. A. Zubida, E. Yitzhaki, N. H. Lindner,  and E. Bairey, “Optimal short-time measurements for hamiltonian learning,”  (2021).
  3. G. Verdon, J. Marks, S. Nanda, S. Leichenauer,  and J. Hidary, “Quantum hamiltonian-based models and the variational quantum thermalizer algorithm,”  (2019).
  4. J. Preskill, Quantum 2, 79 (2018).
  5. A. Blance and M. Spannowsky, Journal of High Energy Physics 2021, 212 (2021).
  6. L. Bassman, K. Klymko, D. Liu, N. M. Tubman,  and W. A. de Jong, “Computing free energies with fluctuation relations on quantum computers,”  (2021), arXiv:2103.09846 [quant-ph] .
  7. Y. Du and I. Mordatch, “Implicit generation and generalization in energy-based models,”  (2019).
  8. K. P. Murphy and F. Bach, Machine learning: a probabilistic perspective, Adaptive computation and machine learning (MIT Press, 2012).
  9. A. Huber, Variational principles in quantum statistical mechanics (Mathematical Methods in Solid State and Superfluid Theory, 1968) pp. 364–392.
  10. A. Butter et al., SciPost Phys. 7, 014 (2019), arXiv:1902.09914 [hep-ph] .
  11. G. Kasieczka, T. Plehn, J. Thompson,  and M. Russel, “Top quark tagging reference dataset,”  (2019).
  12. J. Y. Araz and M. Spannowsky, Journal of High Energy Physics 2021, 296 (2021a).
  13. J. Y. Araz and M. Spannowsky, Journal of High Energy Physics 2021, 112 (2021b).
  14. J. Y. Araz and M. Spannowsky,   (2022), arXiv:2202.10471 [quant-ph] .
  15. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,  and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,”  (2015), software available from tensorflow.org.
  16. J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi, M. Hoffman,  and R. A. Saurous, “Tensorflow distributions,”  (2017).
  17. D. P. Kingma and J. Ba, CoRR abs/1412.6980 (2014).
  18. G. E. Hinton, Neural Computation 14, 1771 (2002), https://direct.mit.edu/neco/article-pdf/14/8/1771/815447/089976602760128018.pdf .
  19. G. E. Hinton and R. R. Salakhutdinov, Science 313, 504 (2006), https://www.science.org/doi/pdf/10.1126/science.1127647 .
  20. J. W. Cooley and J. W. Tukey, Mathematics of Computation 19, 297 (1965).
Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.