Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Fourier-Flow model generating Feynman paths (2211.03470v1)

Published 7 Nov 2022 in hep-lat, hep-th, and quant-ph

Abstract: As an alternative but unified and more fundamental description for quantum physics, Feynman path integrals generalize the classical action principle to a probabilistic perspective, under which the physical observables' estimation translates into a weighted sum over all possible paths. The underlying difficulty is to tackle the whole path manifold from finite samples that can effectively represent the Feynman propagator dictated probability distribution. Modern generative models in machine learning can handle learning and representing probability distribution with high computational efficiency. In this study, we propose a Fourier-flow generative model to simulate the Feynman propagator and generate paths for quantum systems. As demonstration, we validate the path generator on the harmonic and anharmonic oscillators. The latter is a double-well system without analytic solutions. To preserve the periodic condition for the system, the Fourier transformation is introduced into the flow model to approach a Matsubara representation. With this novel development, the ground-state wave function and low-lying energy levels are estimated accurately. Our method offers a new avenue to investigate quantum systems with machine learning assisted Feynman Path integral solving.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.