Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Causal Learning: Representation, Discovery and Inference

Published 7 Nov 2022 in cs.LG and cs.AI | (2211.03374v2)

Abstract: Causal learning has garnered significant attention in recent years because it reveals the essential relationships that underpin phenomena and delineates the mechanisms by which the world evolves. Nevertheless, traditional causal learning methods face numerous challenges and limitations, including high-dimensional, unstructured variables, combinatorial optimization problems, unobserved confounders, selection biases, and estimation inaccuracies. Deep causal learning, which leverages deep neural networks, offers innovative insights and solutions for addressing these challenges. Although numerous deep learning-based methods for causal discovery and inference have been proposed, there remains a dearth of reviews examining the underlying mechanisms by which deep learning can enhance causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by tackling traditional challenges across three key dimensions: representation, discovery, and inference. We emphasize that deep causal learning is pivotal for advancing the theoretical frontiers and broadening the practical applications of causal science. We conclude by summarizing open issues and outlining potential directions for future research.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.