Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A General Framework for Cutting Feedback within Modularised Bayesian Inference (2211.03274v3)

Published 7 Nov 2022 in stat.ME, math.ST, and stat.TH

Abstract: Standard Bayesian inference can build models that combine information from various sources, but this inference may not be reliable if components of a model are misspecified. Cut inference, as a particular type of modularized Bayesian inference, is an alternative which splits a model into modules and cuts the feedback from the suspect module. Previous studies have focused on a two-module case, but a more general definition of a "module" remains unclear. We present a formal definition of a "module" and discuss its properties. We formulate methods for identifying modules; determining the order of modules; and building the cut distribution that should be used for cut inference within an arbitrary directed acyclic graph structure. We justify the cut distribution by showing that it not only cuts the feedback but also is the best approximation satisfying this condition to the joint distribution in the Kullback-Leibler divergence. We also extend cut inference for the two-module case to a general multiple-module case via a sequential splitting technique and demonstrate this via illustrative applications.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.