Papers
Topics
Authors
Recent
2000 character limit reached

Multi-variable Integration with a Neural Network (2211.02834v2)

Published 5 Nov 2022 in hep-ph

Abstract: In this article we present a method for automatic integration of parametric integrals over the unit hypercube using a neural network. The method fits a neural network to the primitive of the integrand using a loss function designed to minimize the difference between multiple derivatives of the network and the function to be integrated. We apply this method to two example integrals resulting from the sector decomposition of a one-loop and two-loop scalar integrals. Our method can achieve per-mil and percent accuracy for these integrals over a range of invariant values. Once the neural network is fitted, the evaluation of the integral is between 40 and 125 times faster than the usual numerical integration method for our examples, and we expect the speed gain to increase with the complexity of the integrand.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.