Papers
Topics
Authors
Recent
2000 character limit reached

Connecting Stochastic Optimal Control and Reinforcement Learning

Published 4 Nov 2022 in math.OC | (2211.02474v2)

Abstract: In this paper the connection between stochastic optimal control and reinforcement learning is investigated. Our main motivation is to apply importance sampling to sampling rare events which can be reformulated as an optimal control problem. By using a parameterised approach the optimal control problem becomes a stochastic optimization problem which still raises some open questions regarding how to tackle the scalability to high-dimensional problems and how to deal with the intrinsic metastability of the system. To explore new methods we link the optimal control problem to reinforcement learning since both share the same underlying framework, namely a Markov Decision Process (MDP). For the optimal control problem we show how the MDP can be formulated. In addition we discuss how the stochastic optimal control problem can be interpreted in the framework of reinforcement learning. At the end of the article we present the application of two different reinforcement learning algorithms to the optimal control problem and a comparison of the advantages and disadvantages of the two algorithms.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.