Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hyperbolicity for large automorphism groups of projective surfaces

Published 4 Nov 2022 in math.DS and math.AG | (2211.02418v2)

Abstract: We study the hyperbolicity properties of the action of a non-elementary automorphism group on a compact complex surface, with an emphasis on K3 and Enriques surfaces. A first result is that when such a group contains parabolic elements, Zariski diffuse invariant measures automatically have non-zero Lyapunov exponents. In combination with our previous work, this leads to simple criteria for a uniform expansion property on the whole surface, for groups with and without parabolic elements. This, in turn, has strong consequences on the dynamics: description of orbit closures, equidistribution, ergodicity properties, etc. Along the way, we provide a reference discussion on uniform expansion of non-linear discrete group actions on compact (real) manifolds and the construction of Margulis functions under optimal moment conditions.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.