Papers
Topics
Authors
Recent
2000 character limit reached

Spectral Regularization: an Inductive Bias for Sequence Modeling (2211.02255v1)

Published 4 Nov 2022 in cs.LG, cs.AI, cs.CL, and stat.ML

Abstract: Various forms of regularization in learning tasks strive for different notions of simplicity. This paper presents a spectral regularization technique, which attaches a unique inductive bias to sequence modeling based on an intuitive concept of simplicity defined in the Chomsky hierarchy. From fundamental connections between Hankel matrices and regular grammars, we propose to use the trace norm of the Hankel matrix, the tightest convex relaxation of its rank, as the spectral regularizer. To cope with the fact that the Hankel matrix is bi-infinite, we propose an unbiased stochastic estimator for its trace norm. Ultimately, we demonstrate experimental results on Tomita grammars, which exhibit the potential benefits of spectral regularization and validate the proposed stochastic estimator.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.