Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analysis of a Deep Learning Model for 12-Lead ECG Classification Reveals Learned Features Similar to Diagnostic Criteria (2211.01738v2)

Published 3 Nov 2022 in eess.SP and cs.LG

Abstract: Despite their remarkable performance, deep neural networks remain unadopted in clinical practice, which is considered to be partially due to their lack in explainability. In this work, we apply attribution methods to a pre-trained deep neural network (DNN) for 12-lead electrocardiography classification to open this "black box" and understand the relationship between model prediction and learned features. We classify data from a public data set and the attribution methods assign a "relevance score" to each sample of the classified signals. This allows analyzing what the network learned during training, for which we propose quantitative methods: average relevance scores over a) classes, b) leads, and c) average beats. The analyses of relevance scores for atrial fibrillation (AF) and left bundle branch block (LBBB) compared to healthy controls show that their mean values a) increase with higher classification probability and correspond to false classifications when around zero, and b) correspond to clinical recommendations regarding which lead to consider. Furthermore, c) visible P-waves and concordant T-waves result in clearly negative relevance scores in AF and LBBB classification, respectively. In summary, our analysis suggests that the DNN learned features similar to cardiology textbook knowledge.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. P. E. McSharry, G. D. Clifford, L. Tarassenko, and L. A. Smith, “A dynamical model for generating synthetic electrocardiogram signals,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 3, pp. 289–294, 2003.
  2. C. Böck, P. Kovács, P. Laguna, J. Meier, and M. Huemer, “Ecg beat representation and delineation by means of variable projection,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 10, pp. 2997–3008, 2021.
  3. S. A. Israel, J. M. Irvine, A. Cheng, M. D. Wiederhold, and B. K. Wiederhold, “Ecg to identify individuals,” Pattern Recognition, vol. 38, no. 1, pp. 133–142, 2005.
  4. T. Mar, S. Zaunseder, J. P. Martínez, M. Llamedo, and R. Poll, “Optimization of ecg classification by means of feature selection,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 8, pp. 2168–2177, 2011.
  5. E. A. Perez Alday et al., “Classification of 12-lead ECGs: the PhysioNet/ Computing in Cardiology Challenge 2020,” Physiological Measurement, vol. 41, no. 12, p. 124003, Dec. 2020.
  6. F. Piccialli, V. Di Somma, F. Giampaolo, S. Cuomo, and G. Fortino, “A survey on deep learning in medicine: Why, how and when?” Information Fusion, vol. 66, no. 1, pp. 111–137, 2021.
  7. S. Yang et al., “A multi-view multi-scale neural network for multi-label ecg classification,” IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1–13, 2023.
  8. T. Pokaprakarn et al., “Sequence to sequence ecg cardiac rhythm classification using convolutional recurrent neural networks,” IEEE journal of biomedical and health informatics, vol. 26, no. 2, pp. 572–580, 2022.
  9. F. Liu et al., “Automatic classification of arrhythmias using multi-branch convolutional neural networks based on channel-based attention and bidirectional lstm,” ISA Transactions, 2023.
  10. D. Le, S. Truong, P. Brijesh, D. Adjeroh, and N. Le, “scl-st: Supervised contrastive learning with semantic transformations for multiple lead ecg arrhythmia classification,” IEEE journal of biomedical and health informatics, pp. 1–10, 2023.
  11. Z. Yu et al., “Ddcnn: A deep learning model for af detection from a single-lead short ecg signal,” IEEE journal of biomedical and health informatics, vol. 26, no. 10, pp. 4987–4995, 2022.
  12. A. Y. Hannun et al., “Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network,” Nature Medicine, vol. 25, no. 1, pp. 65–69, Jan. 2019.
  13. S. W. Smith et al., “A deep neural network learning algorithm outperforms a conventional algorithm for emergency department electrocardiogram interpretation,” Journal of Electrocardiology, vol. 52, pp. 88–95, Jan. 2019.
  14. S. Lapuschkin et al., “Unmasking Clever Hans predictors and assessing what machines really learn,” Nature Communications, vol. 10, no. 1, p. 1096, Dec. 2019.
  15. M. A. Reyna, E. O. Nsoesie, and G. D. Clifford, “Rethinking Algorithm Performance Metrics for Artificial Intelligence in Diagnostic Medicine,” JAMA, vol. 328, no. 4, pp. 329–330, 07 2022.
  16. S. Kapoor and A. Narayanan, “Leakage and the Reproducibility Crisis in ML-based Science,” 2022, publisher: arXiv Version Number: 1.
  17. D. Yoon, J.-H. Jang, B. J. Choi, T. Y. Kim, and C. H. Han, “Discovering hidden information in biosignals from patients using artificial intelligence,” Korean journal of anesthesiology, vol. 73, no. 4, pp. 275–284, 2020.
  18. Y. Elul, A. A. Rosenberg, A. Schuster, A. M. Bronstein, and Y. Yaniv, “Meeting the unmet needs of clinicians from AI systems showcased for cardiology with deep-learning–based ECG analysis,” Proceedings of the National Academy of Sciences, vol. 118, no. 24, p. e2020620118, Jun. 2021.
  19. W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller, “Explaining deep neural networks and beyond: A review of methods and applications,” Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278, 2021.
  20. R. Guidotti et al., “A survey of methods for explaining black box models,” ACM Computing Surveys, vol. 51, no. 5, pp. 1–42, 2019.
  21. S. Bach et al., “On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation,” PloS one, vol. 10, no. 7, p. e0130140, 2015.
  22. M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70, ser. ICML’17.   JMLR.org, 2017, pp. 3319–3328.
  23. R. R. Selvaraju et al., “Grad-cam: Visual explanations from deep networks via gradient-based localization,” International Journal of Computer Vision, vol. 128, no. 2, pp. 336–359, 2020.
  24. H. Taniguchi et al., “Explainable artificial intelligence model for diagnosis of atrial fibrillation using holter electrocardiogram waveforms,” International heart journal, vol. 62, no. 3, pp. 534–539, 2021.
  25. M. Bodini, M. W. Rivolta, and R. Sassi, “Opening the black box: interpretability of machine learning algorithms in electrocardiography,” Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol. 379, no. 2212, p. 20200253, 2021.
  26. I. Sturm, S. Lapuschkin, W. Samek, and K.-R. Müller, “Interpretable deep neural networks for single-trial eeg classification,” Journal of neuroscience methods, vol. 274, pp. 141–145, 2016.
  27. A. H. Ribeiro et al., “Automatic diagnosis of the 12-lead ecg using a deep neural network,” Nature communications, vol. 11, no. 1, p. 1760, 2020.
  28. G. Hindricks et al., “2020 esc guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the european association for cardio-thoracic surgery (eacts)the task force for the diagnosis and management of atrial fibrillation of the european society of cardiology (esc) developed with the special contribution of the european heart rhythm association (ehra) of the esc,” European Heart Journal, vol. 42, no. 5, pp. 373–498, 2021.
  29. A. Bollmann et al., “Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications,” Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology, vol. 8, no. 11, pp. 911–926, 2006.
  30. N. Y. Tan, C. M. Witt, J. K. Oh, and Y.-M. Cha, “Left bundle branch block: Current and future perspectives,” Circulation. Arrhythmia and electrophysiology, vol. 13, no. 4, p. e008239, 2020.
  31. K. Harris, D. Edwards, and J. Mant, “How can we best detect atrial fibrillation?” The Journal of the Royal College of Physicians of Edinburgh, vol. 42 Suppl 18, pp. 5–22, 2012.
  32. A. H. Ribeiro et al., “Annotated 12-lead ecg dataset,” 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3765780
  33. T. Bender, T. Seidler, P. Bengel, U. Sax, and D. Krefting, “Application of pre-trained deep learning models for clinical ecgs,” Studies in health technology and informatics, vol. 283, pp. 39–45, 2021.
  34. G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller, “Explaining nonlinear classification decisions with deep taylor decomposition,” Pattern Recognition, vol. 65, p. 211–222, May 2017.
  35. W. Samek, A. Binder, S. Lapuschkin, and K.-R. Müller, “Understanding and comparing deep neural networks for age and gender classification,” 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1629–1638, 2017.
  36. M. Kohlbrenner et al., “Towards best practice in explaining neural network decisions with lrp,” in 2020 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2020, pp. 1–7.
  37. F. Liu et al., “An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection,” Journal of Medical Imaging and Health Informatics, vol. 8, no. 7, pp. 1368–1373, 2018.
  38. P. Wagner et al., “Ptb-xl, a large publicly available electrocardiography dataset,” Scientific data, vol. 7, no. 1, p. 154, 2020.
  39. A. H. Ribeiro et al., “Pre-trained deep neural network models for ecg automatic abnormality detection,” 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3765717
  40. M. Alber et al., “innvestigate neural networks!” Journal of Machine Learning Research, vol. 20, no. 93, pp. 1–8, 2019.
  41. P. Hamilton and W. Tompkins, “Compression of the ambulatory ecg by average beat subtraction and residual differencing,” IEEE Transactions on Biomedical Engineering, vol. 38, no. 3, pp. 253–259, 1991.
  42. P. Langley, J. Bourke, and A. Murray, “Frequency analysis of atrial fibrillation,” in Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163), 2000, pp. 65–68.
  43. D. G. Strauss, R. H. Selvester, and G. S. Wagner, “Defining Left Bundle Branch Block in the Era of Cardiac Resynchronization Therapy,” The American Journal of Cardiology, vol. 107, no. 6, pp. 927–934, Mar. 2011.
  44. P. W. Macfarlane, “New ECG Criteria for Acute Myocardial Infarction in Patients With Left Bundle Branch Block,” Journal of the American Heart Association, vol. 9, no. 14, p. e017119, Jul. 2020.
  45. S. M. Lauritsen et al., “Explainable artificial intelligence model to predict acute critical illness from electronic health records,” Nature communications, vol. 11, no. 1, p. 3852, 2020.
  46. C. Jansen et al., “Network physiology in insomnia patients: Assessment of relevant changes in network topology with interpretable machine learning models,” Chaos (Woodbury, N.Y.), vol. 29, no. 12, p. 123129, 2019.
  47. M. Doborjeh, Z. Doborjeh, N. Kasabov, M. Barati, and G. Y. Wang, “Deep learning of explainable eeg patterns as dynamic spatiotemporal clusters and rules in a brain-inspired spiking neural network,” Sensors (Basel, Switzerland), vol. 21, no. 14, 2021.
  48. M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Computer vision - ECCV 2014, ser. Lecture Notes in Computer Science, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.   Cham: Springer, 2014, vol. 8689, pp. 818–833.
  49. L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualizing deep neural network decisions: Prediction difference analysis,” in International Conference on Learning Representations, 2017.
  50. W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Muller, “Evaluating the visualization of what a deep neural network has learned,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 11, pp. 2660–2673, 2017.
  51. J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039–H2049, 2000, pMID: 10843903.
Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.