Measurement of the differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass and extraction of the top quark mass in hadronic decays of boosted top quarks (2211.01456v2)
Abstract: A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton+jets channel of top quark pair production ($\mathrm{t\bar{t}}$) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 fb${-1}$. The differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06 $\pm$ 0.84 GeV.
- CDF Collaboration, “Observation of top quark production in p¯p¯𝑝𝑝\bar{p}pover¯ start_ARG italic_p end_ARG italic_p collisions”, Phys. Rev. Lett. 74 (1995) 2626, 10.1103/PhysRevLett.74.2626, arXiv:hep-ex/9503002.
- \DZERO Collaboration, “Observation of the top quark”, Phys. Rev. Lett. 74 (1995) 2632, 10.1103/PhysRevLett.74.2632, arXiv:hep-ex/9503003.
- ALEPH, CDF, D0, DELPHI, L3, OPAL, and SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, and the SLD Electroweak and Heavy Flavour Groups, “Precision electroweak measurements and constraints on the standard model”, 2010. arXiv:1012.2367.
- J. Haller et al., “Update of the global electroweak fit and constraints on two-Higgs-doublet models”, Eur. Phys. J. C 78 (2018) 675, 10.1140/epjc/s10052-018-6131-3, arXiv:1803.01853.
- Particle Data Group, P. A. Zyla et al., “Review of particle physics”, Prog. Theor. Exp. Phys. 2020 (2020) 083C01, 10.1093/ptep/ptaa104.
- G. Degrassi et al., “Higgs mass and vacuum stability in the standard model at NNLO”, JHEP 08 (2012) 098, 10.1007/JHEP08(2012)098, arXiv:1205.6497.
- F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl, and M. Shaposhnikov, “Higgs boson mass and new physics”, JHEP 10 (2012) 140, 10.1007/JHEP10(2012)140, arXiv:1205.2893.
- A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner, and O. L. Veretin, “Stability of the electroweak vacuum: Gauge independence and advanced precision”, Phys. Rev. Lett. 115 (2015) 201802, 10.1103/PhysRevLett.115.201802, arXiv:1507.08833.
- ATLAS Collaboration, “Measurement of the top quark mass in the \ttbar→→\ttbarabsent\ttbar\rightarrow→ dilepton channel from s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV ATLAS data”, Phys. Lett. B 761 (2016) 350, 10.1016/j.physletb.2016.08.042, arXiv:1606.02179.
- ATLAS Collaboration, “Top-quark mass measurement in the all-hadronic \ttbar\ttbar\ttbar decay channel at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector”, JHEP 09 (2017) 118, 10.1007/JHEP09(2017)118, arXiv:1702.07546.
- ATLAS Collaboration, “Measurement of the top quark mass in the \ttbar→→\ttbarabsent\ttbar\rightarrow→ lepton+jets channel from s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV ATLAS data and combination with previous results”, Eur. Phys. J. C 79 (2019) 290, 10.1140/epjc/s10052-019-6757-9, arXiv:1810.01772.
- CMS Collaboration, “Measurement of the top quark mass using proton-proton data at s=7𝑠7{\sqrt{s}}=7square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, Phys. Rev. D 93 (2016) 072004, 10.1103/PhysRevD.93.072004, arXiv:1509.04044.
- CMS Collaboration, “Measurement of the top quark mass in the dileptonic \ttbardecay channel using the mass observables M\cPqbℓsubscript𝑀\cPqbℓ{M}_{\cPqb\ell}italic_M start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT, MT2subscript𝑀T2{M}_{{\text{T}}2}italic_M start_POSTSUBSCRIPT T 2 end_POSTSUBSCRIPT, and M\cPqbℓνsubscript𝑀\cPqbℓ𝜈{M}_{\cPqb\ell\nu}italic_M start_POSTSUBSCRIPT roman_ℓ italic_ν end_POSTSUBSCRIPT in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, Phys. Rev. D 96 (2017) 032002, 10.1103/PhysRevD.96.032002, arXiv:1704.06142.
- CMS Collaboration, “Measurement of the top quark mass with lepton+jets final states using \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 78 (2018) 891, 10.1140/epjc/s10052-018-6332-9, arXiv:1805.01428.
- CMS Collaboration, “Measurement of the top quark mass in the all-jets final state at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV and combination with the lepton+jets channel”, Eur. Phys. J. C 79 (2019) 313, 10.1140/epjc/s10052-019-6788-2, arXiv:1812.10534.
- A. H. Hoang et al., “The MSR mass and the 𝒪(Λqcd)𝒪subscriptΛqcd\mathcal{O}\left({\Lambda}_{\mathrm{qcd}}\right)caligraphic_O ( roman_Λ start_POSTSUBSCRIPT roman_qcd end_POSTSUBSCRIPT ) renormalon sum rule”, JHEP 04 (2018) 003, 10.1007/JHEP04(2018)003, arXiv:1704.01580.
- A. H. Hoang, “What is the top quark mass?”, Ann. Rev. Nucl. Part. Sci. 70 (2020) 225, 10.1146/annurev-nucl-101918-023530, arXiv:2004.12915.
- \DZERO Collaboration, “Determination of the pole and MS¯¯𝑀𝑆\overline{MS}over¯ start_ARG italic_M italic_S end_ARG masses of the top quark from the \ttbarcross section”, Phys. Lett. B 703 (2011) 422, 10.1016/j.physletb.2011.08.015, arXiv:1104.2887.
- \DZERO Collaboration, “Measurement of the inclusive \ttbarproduction cross section in pp¯p¯p\rm{p\bar{p}}roman_p over¯ start_ARG roman_p end_ARG collisions at s=1.96𝑠1.96\sqrt{s}=1.96square-root start_ARG italic_s end_ARG = 1.96 TeV and determination of the top quark pole mass”, Phys. Rev. D 94 (2016) 092004, 10.1103/PhysRevD.94.092004, arXiv:1605.06168.
- ATLAS Collaboration, “Measurement of the \ttbarproduction cross-section using eμ𝑒𝜇e\muitalic_e italic_μ events with b-tagged jets in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8 TeV with the ATLAS detector”, Eur. Phys. J. C 74 (2014) 3109, 10.1140/epjc/s10052-014-3109-7, arXiv:1406.5375. [Addendum: \DOI10.1140/epjc/s10052-016-4501-2].
- ATLAS Collaboration, “Measurement of lepton differential distributions and the top quark mass in \ttbarproduction in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector”, Eur. Phys. J. C 77 (2017) 804, 10.1140/epjc/s10052-017-5349-9, arXiv:1709.09407.
- ATLAS Collaboration, “Measurement of the \ttbarproduction cross-section and lepton differential distributions in eμ𝑒𝜇e\muitalic_e italic_μ dilepton events from \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Eur. Phys. J. C 80 (2020) 528, 10.1140/epjc/s10052-020-7907-9, arXiv:1910.08819.
- CMS Collaboration, “Determination of the top-quark pole mass and strong coupling constant from the \ttbarproduction cross section in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV”, Phys. Lett. B 728 (2014) 496, 10.1016/j.physletb.2013.12.009, arXiv:1307.1907. [Erratum: \DOI10.1016/j.physletb.2014.08.040].
- CMS Collaboration, “Measurement of the \ttbarproduction cross section in the eμ𝜇\muitalic_μ channel in proton-proton collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, JHEP 08 (2016) 029, 10.1007/JHEP08(2016)029, arXiv:1603.02303.
- CMS Collaboration, “Measurement of the \ttbarproduction cross section, the top quark mass, and the strong coupling constant using dilepton events in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 79 (2019) 368, 10.1140/epjc/s10052-019-6863-8, arXiv:1812.10505.
- ATLAS Collaboration, “Determination of the top-quark pole mass using \ttbar\ttbar\ttbar+1-jet events collected with the ATLAS experiment in 7 TeV \Pp\Pp\Pp\Pp{\Pp\Pp} collisions”, JHEP 10 (2015) 121, 10.1007/JHEP10(2015)121, arXiv:1507.01769.
- ATLAS Collaboration, “Measurement of lepton differential distributions and the top quark mass in \ttbar\ttbar\ttbar production in \Pp\Pp\Pp\Pp{\Pp\Pp} collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector”, Eur. Phys. J. C 77 (2017) 804, 10.1140/epjc/s10052-017-5349-9, arXiv:1709.09407.
- ATLAS Collaboration, “Measurement of the top-quark mass in \ttbar\ttbar\ttbar+1-jet events collected with the ATLAS detector in \Pp\Pp\Pp\Pp{\Pp\Pp} collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, JHEP 11 (2019) 150, 10.1007/JHEP11(2019)150, arXiv:1905.02302.
- CMS Collaboration, “Measurement of the top quark pole mass using \ttbar+jet events in the dilepton final state in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, 2022. arXiv:2207.02270. Submitted to JHEP.
- CMS Collaboration, “Measurement of \ttbarnormalised multi-differential cross sections in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions”, Eur. Phys. J. C 80 (2020) 658, 10.1140/epjc/s10052-020-7917-7, arXiv:1904.05237.
- A. J. Larkoski, I. Moult, and B. Nachman, “Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning”, Phys. Rep. 841 (2020) 1, 10.1016/j.physrep.2019.11.001, arXiv:1709.04464.
- R. Kogler et al., “Jet substructure at the large hadron collider”, Rev. Mod. Phys. 91 (2019) 045003, 10.1103/RevModPhys.91.045003, arXiv:1803.06991.
- R. Kogler, “Advances in jet substructure at the LHC: Algorithms, measurements and searches for new physical phenomena”, volume 284 of Springer Tracts Mod. Phys. Springer, 2021. 10.1007/978-3-030-72858-8, ISBN 978-3-030-72857-1, 978-3-030-72858-8.
- A. H. Hoang, S. Mantry, A. Pathak, and I. W. Stewart, “Extracting a short distance top mass with light grooming”, Phys. Rev. D 100 (2019) 074021, 10.1103/PhysRevD.100.074021, arXiv:1708.02586.
- CMS Collaboration, “Measurement of the jet mass in highly boosted \ttbarevents from \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, Eur. Phys. J. C 77 (2017) 467, 10.1140/epjc/s10052-017-5030-3, arXiv:1703.06330.
- CMS Collaboration, “Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 124 (2020) 202001, 10.1103/PhysRevLett.124.202001, arXiv:1911.03800.
- CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, JINST 6 (2011) P11002, 10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.
- CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in \Pp\Pp\Pp\Pp\Pp\Pp collisions at 8 TeV”, JINST 12 (2017) P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
- J. Thaler and K. Van Tilburg, “Identifying boosted objects with N𝑁{N}italic_N-subjettiness”, JHEP 03 (2011) 015, 10.1007/JHEP03(2011)015, arXiv:1011.2268.
- J. Thaler and K. Van Tilburg, “Maximizing boosted top identification by minimizing N𝑁{N}italic_N-subjettiness”, JHEP 02 (2012) 093, 10.1007/JHEP02(2012)093, arXiv:1108.2701.
- P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: The Monash 2013 Tune”, Eur. Phys. J. C 74 (2014) 3024, 10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
- CMS Collaboration, “Measurement of jet substructure observables in \ttbarevents from proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 98 (2018) 092014, 10.1103/PhysRevD.98.092014, arXiv:1808.07340.
- HEPData record for this analysis, 2022. 10.17182/hepdata.130712.
- CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- Tracker Group of the CMS Collaboration, “The CMS Phase-1 pixel detector upgrade”, JINST 16 (2021) P02027, 10.1088/1748-0221/16/02/P02027, arXiv:2012.14304.
- CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
- CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
- CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s=13TeV𝑠13TeV\sqrt{s}=13~{}\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
- CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s=13TeV𝑠13TeV\sqrt{s}=13~{}\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
- P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, 10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
- S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, 10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, 10.1007/JHEP06(2010)043, arXiv:1002.2581.
- S. Frixione, P. Nason, and G. Ridolfi, “A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction”, JHEP 09 (2007) 126, 10.1088/1126-6708/2007/09/126, arXiv:0707.3088.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s𝑠sitalic_s- and t𝑡titalic_t-channel contributions”, JHEP 09 (2009) 111, 10.1088/1126-6708/2009/09/111, arXiv:0907.4076. [Erratum: \DOI10.1007/JHEP02(2010)011].
- E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method”, Eur. Phys. J. C 71 (2011) 1547, 10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.
- M. Czakon and A. Mitov, “Top++: A program for the calculation of the top-pair cross-section at hadron colliders”, Comput. Phys. Commun. 185 (2014) 2930, 10.1016/j.cpc.2014.06.021, arXiv:1112.5675.
- J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
- S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton shower simulations”, JHEP 06 (2002) 029, 10.1088/1126-6708/2002/06/029, arXiv:hep-ph/0204244.
- N. Kidonakis, “Two-loop soft anomalous dimensions for single top quark associated production with a \PWm\PWm{\PWm} or \PH−superscript\PH{\PH}^{-}start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT”, Phys. Rev. D 82 (2010) 054018, 10.1103/PhysRevD.82.054018, arXiv:1005.4451.
- N. Kidonakis, “Top quark production”, in Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons. 2013. arXiv:1311.0283. 10.3204/DESY-PROC-2013-03/Kidonakis.
- M. Aliev et al., “HATHOR — HAdronic Top and Heavy quarks crOss section calculatoR”, Comput. Phys. Commun. 182 (2011) 1034, 10.1016/j.cpc.2010.12.040, arXiv:1007.1327.
- Y. Li and F. Petriello, “Combining QCD and electroweak corrections to dilepton production in FEWZ”, Phys. Rev. D 86 (2012) 094034, 10.1103/PhysRevD.86.094034, arXiv:1208.5967.
- T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
- NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, 10.1007/JHEP04(2015)040, arXiv:1410.8849.
- NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
- R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, 10.1007/JHEP12(2012)061, arXiv:1209.6215.
- J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
- CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
- CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, 10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
- GEANT4 Collaboration, “\GEANTfour — A simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
- J. Allison et al., “\GEANTfour developments and applications”, IEEE Trans. Nucl. Sci. 53 (2006) 270, 10.1109/TNS.2006.869826.
- CMS Collaboration, “Measurement of the inelastic proton-proton cross section at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 07 (2018) 161, 10.1007/JHEP07(2018)161, arXiv:1802.02613.
- CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- M. Cacciari, G. P. Salam, and G. Soyez, “Fastjet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
- CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
- CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
- I. W. Stewart et al., “XCone: N𝑁{N}italic_N-jettiness as an exclusive cone jet algorithm”, JHEP 11 (2015) 072, 10.1007/JHEP11(2015)072, arXiv:1508.01516.
- J. Thaler and T. F. Wilkason, “Resolving boosted jets with XCone”, JHEP 12 (2015) 051, 10.1007/JHEP12(2015)051, arXiv:1508.01518.
- D. Krohn, J. Thaler, and L.-T. Wang, “Jet trimming”, JHEP 02 (2010) 084, 10.1007/JHEP02(2010)084, arXiv:0912.1342.
- Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber, “Better jet clustering algorithms”, JHEP 08 (1997) 001, 10.1088/1126-6708/1997/08/001, arXiv:hep-ph/9707323.
- M. Wobisch and T. Wengler, “Hadronization corrections to jet cross sections in deep-inelastic scattering”, in Workshop on Monte Carlo generators for HERA physics. DESY, Hamburg, Germany, 1998. arXiv:hep-ph/9907280.
- CMS Collaboration, “Search for resonant \ttbarproduction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 04 (2019) 031, 10.1007/JHEP04(2019)031, arXiv:1810.05905.
- CMS Collaboration, “Search for a heavy resonance decaying to a top quark and a vector-like top quark in the lepton+jets final state in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 79 (2019) 208, 10.1140/epjc/s10052-019-6688-5, arXiv:1812.06489.
- CMS Collaboration, “Performance of b tagging algorithms in proton-proton collisions at 13 TeV with Phase 1 CMS detector”, CMS Detector Performance Note CMS-DP-2018-033, 2018.
- E. Bols et al., “Jet flavour classification using DeepJet”, JINST 15 (2020) P12012, 10.1088/1748-0221/15/12/P12012, arXiv:2008.10519.
- CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
- CMS Collaboration, “Measurement of differential \ttbar\ttbar\ttbar production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 104 (2021) 092013, 10.1103/PhysRevD.104.092013, arXiv:2108.02803.
- ATLAS Collaboration, “Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the standard model contributions to top-quark pair production with the ATLAS detector at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 06 (2022) 063, 10.1007/JHEP06(2022)063, arXiv:2202.12134.
- ATLAS Collaboration, “Differential \ttbar\ttbar\ttbar cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of ATLAS data”, 2022. arXiv:2205.02817.
- F. Herren and M. Steinhauser, “Version 3 of RunDec and CRunDec”, Comput. Phys. Commun. 224 (2018) 333, 10.1016/j.cpc.2017.11.014, arXiv:1703.03751.
- S. Schmitt, “TUnfold: An algorithm for correcting migration effects in high energy physics”, JINST 7 (2012) T10003, 10.1088/1748-0221/7/10/T10003, arXiv:1205.6201.
- S. Schmitt, “Data unfolding methods in high energy physics”, in 12th Conference on Quark Confinement and the Hadron Spectrum. Confinement XII, Thessaloniki, Greece, 2016. arXiv:1611.01927.
- CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in \Pp\Pp\Pp\Pp\Pp\Pp collisions at 13 TeV”, JINST 13 (2018) P05011, 10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
- M. Bahr et al., “Herwig++ physics and manual”, Eur. Phys. J. C 58 (2008) 639, 10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.
- S. Gieseke, C. Rohr, and A. Siodmok, “Colour reconnections in Herwig++”, Eur. Phys. J. C 72 (2012) 2225, 10.1140/epjc/s10052-012-2225-5, arXiv:1206.0041.
- CMS Collaboration, “Measurement of the \ttbarproduction cross section using events in the \Peμ𝜇\muitalic_μ final state in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 77 (2017) 172, 10.1140/epjc/s10052-017-4718-8, arXiv:1611.04040.
- CMS Collaboration, “Measurement of inclusive \PW and \PZ boson production cross sections in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, Phys. Rev. Lett. 112 (2014) 191802, 10.1103/PhysRevLett.112.191802, arXiv:1402.0923.
- CMS Collaboration, “Cross section measurement of t𝑡titalic_t-channel single top quark production in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 772 (2017) 752, 10.1016/j.physletb.2017.07.047, arXiv:1610.00678.
- N. Kidonakis, “NNLL threshold resummation for top-pair and single-top production”, Phys. Part. Nucl. 45 (2014) 714, 10.1134/S1063779614040091, arXiv:1210.7813.
- T. Gehrmann et al., “\PW+\PW−superscript\PWsuperscript\PW{\PW}^{+}{\PW}^{-}start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT production at hadron colliders in next-to-next-to-leading order QCD”, Phys. Rev. Lett. 113 (2014) 212001, 10.1103/PhysRevLett.113.212001, arXiv:1408.5243.
- CMS Collaboration, “Measurement of the WZ production cross section in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 766 (2017) 268, 10.1016/j.physletb.2017.01.011, arXiv:1607.06943.
- CMS Collaboration, “Development and validation of HERWIG 7 tunes from CMS underlying-event measurements”, Eur. Phys. J. C 81 (2021) 312, 10.1140/epjc/s10052-021-08949-5, arXiv:2011.03422.
- T. Sjöstrand and M. van Zijl, “A multiple interaction model for the event structure in hadron collisions”, Phys. Rev. D 36 (1987) 2019, 10.1103/PhysRevD.36.2019.
- S. Argyropoulos and T. Sjöstrand, “Effects of color reconnection on \ttbar\ttbar\ttbar final states at the LHC”, JHEP 11 (2014) 043, 10.1007/JHEP11(2014)043, arXiv:1407.6653.
- J. R. Christiansen and P. Z. Skands, “String formation beyond leading colour”, JHEP 08 (2015) 003, 10.1007/JHEP08(2015)003, arXiv:1505.01681.
- J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, 10.1088/0954-3899/43/2/023001, arXiv:1510.03865.
- D. Britzger, “The linear template fit”, Eur. Phys. J. C 82 (2022) 731, 10.1140/epjc/s10052-022-10581-w, arXiv:2112.01548.
- CMS Collaboration, “Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques”, JINST 15 (2020) P06005, 10.1088/1748-0221/15/06/P06005, arXiv:2004.08262.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.