Estimates for low Steklov eigenvalues of surfaces with several boundary components (2211.01043v4)
Abstract: In this article, we give computable lower bounds for the first non-zero Steklov eigenvalue $\sigma_1$ of a compact connected 2-dimensional Riemannian manifold $M$ with several cylindrical boundary components. These estimates show how the geometry of $M$ away from the boundary affects this eigenvalue. They involve geometric quantities specific to manifolds with boundary such as the extrinsic diameter of the boundary. In a second part, we give lower and upper estimates for the low Steklov eigenvalues of a hyperbolic surface with a geodesic boundary in terms of the length of some families of geodesics. This result is similar to a well known result of Schoen, Wolpert and Yau for Laplace eigenvalues on a closed hyperbolic surface.
- Jade Brisson. Problèmes isopérimétriques et isospectralité pour le problème de Steklov. Master’s thesis, Université Laval, Québec, Canada, 2019.
- Peter Buser. Über den ersten Eigenwert des Laplace-Operators auf kompakten Flächen. Comment. Math. Helv., 54(3):477–493, 1979.
- Peter Buser. On Cheeger’s inequality λ1≥h2/4subscript𝜆1superscriptℎ24\lambda_{1}\geq h^{2}/4italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≥ italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pages 29–77. Amer. Math. Soc., Providence, R.I., 1980.
- Peter Buser. Geometry and spectra of compact Riemann surfaces. Modern Birkhäuser Classics. Birkhäuser Boston, Ltd., Boston, MA, 2010. Reprint of the 1992 edition.
- Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pages 195–199. Princeton Univ. Press, Princeton, N. J., 1970.
- Compact manifolds with fixed boundary and large Steklov eigenvalues. Proc. Amer. Math. Soc., 147(9):3813–3827, 2019.
- Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. J. Geom. Anal., 29(2):1811–1834, 2019.
- Some recent developments on the Steklov eigenvalue problem. Rev. Mat. Complut., 37(1):1–161, 2024.
- The Steklov and Laplacian spectra of Riemannian manifolds with boundary. J. Funct. Anal., 278(6):108409, 38, 2020.
- The Steklov spectrum and coarse discretizations of manifolds with boundary. Pure and Applied Mathematics Quarterly, 14(2):357–392, 2018.
- Daniel Daners. Domain perturbation for linear and semi-linear boundary value problems. In Handbook of differential equations: stationary partial differential equations. Vol. VI, Handb. Differ. Equ., pages 1–81. Elsevier/North-Holland, Amsterdam, 2008.
- José F. Escobar. The geometry of the first non-zero Stekloff eigenvalue. J. Funct. Anal., 150(2):544–556, 1997.
- José F. Escobar. An isoperimetric inequality and the first Steklov eigenvalue. J. Funct. Anal., 165(1):101–116, 1999.
- Alfred Gray. Tubes, volume 221 of Progress in Mathematics. Birkhäuser Verlag, Basel, second edition, 2004. With a preface by Vicente Miquel.
- Higher order Cheeger inequalities for Steklov eigenvalues. Ann. Sci. Éc. Norm. Supér. (4), 53(1):43–88, 2020.
- Pierre Jammes. Une inégalité de Cheeger pour le spectre de Steklov. Annales de l’Institut Fourier, 65(3):1381–1385, 2015.
- John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.
- Lawrence E. Payne. Some isoperimetric inequalities for harmonic functions. SIAM J. Math. Anal., 1:354–359, 1970.
- Hélène Perrin. Lower bounds for the first eigenvalue of the Steklov problem on graphs. Calc. Var. Partial Differential Equations, 58(2):Art. 67, 12, 2019.
- Geometric bounds on the low eigenvalues of a compact surface. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pages 279–285. Amer. Math. Soc., Providence, R.I., 1980.
- Changwei Xiong. On the spectra of three Steklov eigenvalue problems on warped product manifolds. J. Geom. Anal., 32(5):Paper No. 153, 35, 2022.
- Shing Tung Yau. Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. (4), 8(4):487–507, 1975.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.