Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 21 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A novel approach to quantify volatility prediction (2211.00528v1)

Published 1 Nov 2022 in q-fin.CP and q-fin.MF

Abstract: Volatility prediction in the financial market helps to understand the profit and involved risks in investment. However, due to irregularities, high fluctuations, and noise in the time series, predicting volatility poses a challenging task. In the recent Covid-19 pandemic situation, volatility prediction using complex intelligence techniques has attracted enormous attention from researchers worldwide. In this paper, a novel and simple approach based on the robust least squares method in two approaches a) with least absolute residuals (LAR) and b) without LAR, have been applied to the Chicago Board Options Exchange (CBOE) Volatility Index (VIX) for a period of ten years. For a deeper analysis, the volatility time series has been decomposed into long-term trends, and seasonal, and random fluctuations. The data sets have been divided into parts viz. training data set and testing data set. The validation results have been achieved using root mean square error (RMSE) values. It has been found that robust least squares method with LAR approach gives better results for volatility (RMSE = 0.01366) and its components viz. long term trend (RMSE = 0.10087), seasonal (RMSE = 0.010343) and remainder fluctuations (RMSE = 0.014783), respectively. For the first time, generalized prediction equations for volatility and its three components have been presented. Young researchers working in this domain can directly use the presented prediction equations to understand their data sets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube