Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimization of convolutional neural networks for background suppression in the PandaX-III experiment (2211.00237v2)

Published 1 Nov 2022 in physics.ins-det and hep-ex

Abstract: The tracks recorded by a gaseous detector provide a possibility for charged particle identification. For searching the neutrinoless double beta decay events of 136Xe in the PandaX-III experiment, we optimized the convolutional neural network based on the Monte Carlo simulation data to improve the signal-background discrimination power. EfficientNet is chosen as the baseline model and the optimization is performed by tuning the hyperparameters. In particular, the maximum discrimination power is achieved by optimizing the channel number of the top convolutional layer. In comparison with our previous work, the significance of discrimination has been improved by about 70%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.