Papers
Topics
Authors
Recent
2000 character limit reached

Large solutions of elliptic semilinear equations non-degenerate near the boundary (2211.00132v3)

Published 31 Oct 2022 in math.AP

Abstract: In this paper we study the so-called large solutions of elliptic semilinear equations with non null sources term, thus solutions blowing up on the boundary of the domain for which reason they are greater than any other solution whenever Weak Maximum Principle holds. The main topic about large solutions is uniqueness results and their behavior near the boundary. It is much less than being simple. The structure of the semilinear equations considered includes the well known Keller-Osserman integral and an assumption on the ellipticity of the leading part of the differential operator. In our study an uniform ellipticity near the boundary is required. We consider source terms in the PDE whose boundary explosion is consistent with the Keller-Osserman condition. Extra Keller-Osserman explosions on the source are also studied, showing in particular that in some cases the PDE only admits large solutions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.