2000 character limit reached
Congruences concerning binomial coefficients and binary quadratic forms (2210.17255v4)
Published 31 Oct 2022 in math.NT and math.CO
Abstract: Let $p>3$ be a prime. In this paper, we obtain the congruences for $$\sum_{k=0}{p-1}\frac{w(k)\binom{2k}k3}{(-8)k},\ \sum_{k=0}{p-1}\frac{w(k)\binom{2k}k2\binom{3k}k}{(-192)k},\ \sum_{k=0}{p-1}\frac{w(k)\binom{2k}k2\binom{4k}{2k}}{(-144)k}\ \text{and} \ \sum_{k=0}{p-1}\frac{w(k)\binom{2k}k2\binom{4k}{2k}}{648k}$$ modulo $p2$, and partial results for $\sum_{k=0}{(p-1)/2} \binom{2k}k3\frac{w(k)}{mk}$ modulo $p2$, where $m\in{1,16,-64,256,-512,4096}$ and $w(k)\in{k2,k3,\frac 1{k+1},\frac 1{(k+1)2},\frac 1{(k+1)3}, \frac 1{2k-1},\frac 1{k+2}}$.