Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Cause-of-Death Classification from Verbal Autopsy Reports (2210.17161v1)

Published 31 Oct 2022 in cs.CL and cs.LG

Abstract: In many lower-and-middle income countries including South Africa, data access in health facilities is restricted due to patient privacy and confidentiality policies. Further, since clinical data is unique to individual institutions and laboratories, there are insufficient data annotation standards and conventions. As a result of the scarcity of textual data, NLP techniques have fared poorly in the health sector. A cause of death (COD) is often determined by a verbal autopsy (VA) report in places without reliable death registration systems. A non-clinician field worker does a VA report using a set of standardized questions as a guide to uncover symptoms of a COD. This analysis focuses on the textual part of the VA report as a case study to address the challenge of adapting NLP techniques in the health domain. We present a system that relies on two transfer learning paradigms of monolingual learning and multi-source domain adaptation to improve VA narratives for the target task of the COD classification. We use the Bidirectional Encoder Representations from Transformers (BERT) and Embeddings from LLMs (ELMo) models pre-trained on the general English and health domains to extract features from the VA narratives. Our findings suggest that this transfer learning system improves the COD classification tasks and that the narrative text contains valuable information for figuring out a COD. Our results further show that combining binary VA features and narrative text features learned via this framework boosts the classification task of COD.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.